Hemififths/Chords

From Xenharmonic Wiki
Revision as of 15:02, 21 December 2011 by Wikispaces>genewardsmith (**Imported revision 287999812 - Original comment: **)
Jump to navigation Jump to search

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author genewardsmith and made on 2011-12-21 15:02:00 UTC.
The original revision id was 287999812.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

Below are listed the [[Dyadic chord|dyadic chords]] of 11-limit [[Breedsmic temperaments#Hemififths|hemififths temperament]]. The essentially just chords are typed as otonal, utonal, or ambitonal. Those requiring tempering only by 540/539 are swetismic, by 441/440 werckismic, by 896/891 pentacircle, by 243/242 rastmic, and by 1344/1331 hemimin. Those requiring tempering by any two of 540/539, 441/440 or 243/242 are labeled jove, and those requiring both 441/440 and 896/891 are labeled pele. The label "nofives" refers to the unnamed rank-three temperament tempering out 243/242, 896/891 and 1344/1331, and if any two of these are needed the chord is so labled. "Nofives" refers to the fact that it is in essence a no-fives version of hemififths; if the full hemififths is required because of the tempering out of three independent hemififths commas, the chord is labeled "hemififths".

A striking feature of these hemififths chords is that essentially just chords tend to be of higher complexity than essentially tempered chords. Hemififths has MOS of size 7, 10, 17 and 24, and even seven notes are well-supplied with chords, mostly but by no means entirely essentially tempered chords. Extending consideration to the 13-limit adds even more such chords.

=Triads=
|| Number || Chord || Transversal || Type ||
|| 1 || 0-1-2 || 1-11/9-3/2 || rastmic ||
|| 2 || 0-1-3 || 1-11/9-11/6 || utonal ||
|| 3 || 0-2-3 || 1-3/2-11/6 || otonal ||
|| 4 || 0-1-4 || 1-11/9-9/8 || rastmic ||
|| 5 || 0-2-4 || 1-3/2-9/8 || ambitonal ||
|| 6 || 0-3-4 || 1-11/6-9/8 || rastmic ||
|| 7 || 0-1-5 || 1-11/9-11/8 || utonal ||
|| 8 || 0-2-5 || 1-3/2-11/8 || otonal ||
|| 9 || 0-3-5 || 1-11/6-11/8 || utonal ||
|| 10 || 0-4-5 || 1-9/8-11/8 || otonal ||
|| 11 || 0-3-8 || 1-11/6-14/11 || hemimin ||
|| 12 || 0-4-8 || 1-9/8-14/11 || pentacircle ||
|| 13 || 0-5-8 || 1-11/8-14/11 || hemimin ||
|| 14 || 0-1-9 || 1-11/9-14/9 || otonal ||
|| 15 || 0-4-9 || 1-9/8-14/9 || pentacircle ||
|| 16 || 0-5-9 || 1-11/8-14/9 || pentacircle ||
|| 17 || 0-8-9 || 1-14/11-14/9 || utonal ||
|| 18 || 0-2-11 || 1-3/2-7/6 || otonal ||
|| 19 || 0-3-11 || 1-11/6-7/6 || otonal ||
|| 20 || 0-8-11 || 1-14/11-7/6 || utonal ||
|| 21 || 0-9-11 || 1-14/9-7/6 || utonal ||
|| 22 || 0-1-12 || 1-11/9-10/7 || swetismic ||
|| 23 || 0-3-12 || 1-11/6-10/7 || swetismic ||
|| 24 || 0-4-12 || 1-9/8-10/7 || werckismic ||
|| 25 || 0-8-12 || 1-14/11-10/7 || werckismic ||
|| 26 || 0-9-12 || 1-14/9-10/7 || swetismic ||
|| 27 || 0-11-12 || 1-7/6-10/7 || swetismic ||
|| 28 || 0-1-13 || 1-11/9-7/4 || werckismic ||
|| 29 || 0-2-13 || 1-3/2-7/4 || otonal ||
|| 30 || 0-4-13 || 1-9/8-7/4 || otonal ||
|| 31 || 0-5-13 || 1-11/8-7/4 || otonal ||
|| 32 || 0-8-13 || 1-14/11-7/4 || utonal ||
|| 33 || 0-9-13 || 1-14/9-7/4 || utonal ||
|| 34 || 0-11-13 || 1-7/6-7/4 || utonal ||
|| 35 || 0-12-13 || 1-10/7-7/4 || werckismic ||
|| 36 || 0-8-20 || 1-14/11-20/11 || otonal ||
|| 37 || 0-9-20 || 1-14/9-20/11 || swetismic ||
|| 38 || 0-11-20 || 1-7/6-20/11 || swetismic ||
|| 39 || 0-12-20 || 1-10/7-20/11 || utonal ||
|| 40 || 0-1-21 || 1-11/9-10/9 || otonal ||
|| 41 || 0-8-21 || 1-14/11-10/9 || werckismic ||
|| 42 || 0-9-21 || 1-14/9-10/9 || otonal ||
|| 43 || 0-12-21 || 1-10/7-10/9 || utonal ||
|| 44 || 0-13-21 || 1-7/4-10/9 || werckismic ||
|| 45 || 0-20-21 || 1-20/11-10/9 || utonal ||
|| 46 || 0-2-23 || 1-3/2-5/3 || otonal ||
|| 47 || 0-3-23 || 1-11/6-5/3 || otonal ||
|| 48 || 0-11-23 || 1-7/6-5/3 || otonal ||
|| 49 || 0-12-23 || 1-10/7-5/3 || utonal ||
|| 50 || 0-20-23 || 1-20/11-5/3 || utonal ||
|| 51 || 0-21-23 || 1-10/9-5/3 || utonal ||
|| 52 || 0-2-25 || 1-3/2-5/4 || otonal ||
|| 53 || 0-4-25 || 1-9/8-5/4 || otonal ||
|| 54 || 0-5-25 || 1-11/8-5/4 || otonal ||
|| 55 || 0-12-25 || 1-10/7-5/4 || utonal ||
|| 56 || 0-13-25 || 1-7/4-5/4 || otonal ||
|| 57 || 0-20-25 || 1-20/11-5/4 || utonal ||
|| 58 || 0-21-25 || 1-10/9-5/4 || utonal ||
|| 59 || 0-23-25 || 1-5/3-5/4 || utonal ||

=Tetrads=
|| Number || Chord || Transversal || Type ||
|| 1 || 0-1-2-3 || 1-11/9-3/2-11/6 || rastmic ||
|| 2 || 0-1-2-4 || 1-11/9-3/2-9/8 || rastmic ||
|| 3 || 0-1-3-4 || 1-11/9-11/6-9/8 || rastmic ||
|| 4 || 0-2-3-4 || 1-3/2-11/6-9/8 || rastmic ||
|| 5 || 0-1-2-5 || 1-11/9-3/2-11/8 || rastmic ||
|| 6 || 0-1-3-5 || 1-11/9-11/6-11/8 || utonal ||
|| 7 || 0-2-3-5 || 1-3/2-11/6-11/8 || ambitonal ||
|| 8 || 0-1-4-5 || 1-11/9-9/8-11/8 || rastmic ||
|| 9 || 0-2-4-5 || 1-3/2-9/8-11/8 || otonal ||
|| 10 || 0-3-4-5 || 1-11/6-9/8-11/8 || rastmic ||
|| 11 || 0-3-4-8 || 1-11/6-9/8-14/11 || nofives ||
|| 12 || 0-3-5-8 || 1-11/6-11/8-14/11 || hemimin ||
|| 13 || 0-4-5-8 || 1-9/8-11/8-14/11 || nofives ||
|| 14 || 0-1-4-9 || 1-11/9-9/8-14/9 || nofives ||
|| 15 || 0-1-5-9 || 1-11/9-11/8-14/9 || pentacircle ||
|| 16 || 0-4-5-9 || 1-9/8-11/8-14/9 || pentacircle ||
|| 17 || 0-4-8-9 || 1-9/8-14/11-14/9 || pentacircle ||
|| 18 || 0-5-8-9 || 1-11/8-14/11-14/9 || nofives ||
|| 19 || 0-2-3-11 || 1-3/2-11/6-7/6 || otonal ||
|| 20 || 0-3-8-11 || 1-11/6-14/11-7/6 || hemimin ||
|| 21 || 0-8-9-11 || 1-14/11-14/9-7/6 || utonal ||
|| 22 || 0-1-3-12 || 1-11/9-11/6-10/7 || swetismic ||
|| 23 || 0-1-4-12 || 1-11/9-9/8-10/7 || jove ||
|| 24 || 0-3-4-12 || 1-11/6-9/8-10/7 || jove ||
|| 25 || 0-3-8-12 || 1-11/6-14/11-10/7 || hemififths ||
|| 26 || 0-4-8-12 || 1-9/8-14/11-10/7 || pele ||
|| 27 || 0-1-9-12 || 1-11/9-14/9-10/7 || swetismic ||
|| 28 || 0-4-9-12 || 1-9/8-14/9-10/7 || hemififths ||
|| 29 || 0-8-9-12 || 1-14/11-14/9-10/7 || jove ||
|| 30 || 0-3-11-12 || 1-11/6-7/6-10/7 || swetismic ||
|| 31 || 0-8-11-12 || 1-14/11-7/6-10/7 || jove ||
|| 32 || 0-9-11-12 || 1-14/9-7/6-10/7 || swetismic ||
|| 33 || 0-1-2-13 || 1-11/9-3/2-7/4 || jove ||
|| 34 || 0-1-4-13 || 1-11/9-9/8-7/4 || jove ||
|| 35 || 0-2-4-13 || 1-3/2-9/8-7/4 || otonal ||
|| 36 || 0-1-5-13 || 1-11/9-11/8-7/4 || werckismic ||
|| 37 || 0-2-5-13 || 1-3/2-11/8-7/4 || otonal ||
|| 38 || 0-4-5-13 || 1-9/8-11/8-7/4 || otonal ||
|| 39 || 0-4-8-13 || 1-9/8-14/11-7/4 || pentacircle ||
|| 40 || 0-5-8-13 || 1-11/8-14/11-7/4 || hemimin ||
|| 41 || 0-1-9-13 || 1-11/9-14/9-7/4 || werckismic ||
|| 42 || 0-4-9-13 || 1-9/8-14/9-7/4 || pentacircle ||
|| 43 || 0-5-9-13 || 1-11/8-14/9-7/4 || pentacircle ||
|| 44 || 0-8-9-13 || 1-14/11-14/9-7/4 || utonal ||
|| 45 || 0-2-11-13 || 1-3/2-7/6-7/4 || ambitonal ||
|| 46 || 0-8-11-13 || 1-14/11-7/6-7/4 || utonal ||
|| 47 || 0-9-11-13 || 1-14/9-7/6-7/4 || utonal ||
|| 48 || 0-1-12-13 || 1-11/9-10/7-7/4 || jove ||
|| 49 || 0-4-12-13 || 1-9/8-10/7-7/4 || werckismic ||
|| 50 || 0-8-12-13 || 1-14/11-10/7-7/4 || werckismic ||
|| 51 || 0-9-12-13 || 1-14/9-10/7-7/4 || jove ||
|| 52 || 0-11-12-13 || 1-7/6-10/7-7/4 || jove ||
|| 53 || 0-8-9-20 || 1-14/11-14/9-20/11 || swetismic ||
|| 54 || 0-8-11-20 || 1-14/11-7/6-20/11 || swetismic ||
|| 55 || 0-9-11-20 || 1-14/9-7/6-20/11 || swetismic ||
|| 56 || 0-8-12-20 || 1-14/11-10/7-20/11 || werckismic ||
|| 57 || 0-9-12-20 || 1-14/9-10/7-20/11 || swetismic ||
|| 58 || 0-11-12-20 || 1-7/6-10/7-20/11 || swetismic ||
|| 59 || 0-1-9-21 || 1-11/9-14/9-10/9 || otonal ||
|| 60 || 0-8-9-21 || 1-14/11-14/9-10/9 || werckismic ||
|| 61 || 0-1-12-21 || 1-11/9-10/7-10/9 || swetismic ||
|| 62 || 0-8-12-21 || 1-14/11-10/7-10/9 || werckismic ||
|| 63 || 0-9-12-21 || 1-14/9-10/7-10/9 || swetismic ||
|| 64 || 0-1-13-21 || 1-11/9-7/4-10/9 || werckismic ||
|| 65 || 0-8-13-21 || 1-14/11-7/4-10/9 || werckismic ||
|| 66 || 0-9-13-21 || 1-14/9-7/4-10/9 || werckismic ||
|| 67 || 0-12-13-21 || 1-10/7-7/4-10/9 || werckismic ||
|| 68 || 0-8-20-21 || 1-14/11-20/11-10/9 || werckismic ||
|| 69 || 0-9-20-21 || 1-14/9-20/11-10/9 || swetismic ||
|| 70 || 0-12-20-21 || 1-10/7-20/11-10/9 || utonal ||
|| 71 || 0-2-3-23 || 1-3/2-11/6-5/3 || otonal ||
|| 72 || 0-2-11-23 || 1-3/2-7/6-5/3 || otonal ||
|| 73 || 0-3-11-23 || 1-11/6-7/6-5/3 || otonal ||
|| 74 || 0-3-12-23 || 1-11/6-10/7-5/3 || swetismic ||
|| 75 || 0-11-12-23 || 1-7/6-10/7-5/3 || swetismic ||
|| 76 || 0-11-20-23 || 1-7/6-20/11-5/3 || swetismic ||
|| 77 || 0-12-20-23 || 1-10/7-20/11-5/3 || utonal ||
|| 78 || 0-12-21-23 || 1-10/7-10/9-5/3 || utonal ||
|| 79 || 0-20-21-23 || 1-20/11-10/9-5/3 || utonal ||
|| 80 || 0-2-4-25 || 1-3/2-9/8-5/4 || otonal ||
|| 81 || 0-2-5-25 || 1-3/2-11/8-5/4 || otonal ||
|| 82 || 0-4-5-25 || 1-9/8-11/8-5/4 || otonal ||
|| 83 || 0-4-12-25 || 1-9/8-10/7-5/4 || werckismic ||
|| 84 || 0-2-13-25 || 1-3/2-7/4-5/4 || otonal ||
|| 85 || 0-4-13-25 || 1-9/8-7/4-5/4 || otonal ||
|| 86 || 0-5-13-25 || 1-11/8-7/4-5/4 || otonal ||
|| 87 || 0-12-13-25 || 1-10/7-7/4-5/4 || werckismic ||
|| 88 || 0-12-20-25 || 1-10/7-20/11-5/4 || utonal ||
|| 89 || 0-12-21-25 || 1-10/7-10/9-5/4 || utonal ||
|| 90 || 0-13-21-25 || 1-7/4-10/9-5/4 || werckismic ||
|| 91 || 0-20-21-25 || 1-20/11-10/9-5/4 || utonal ||
|| 92 || 0-2-23-25 || 1-3/2-5/3-5/4 || ambitonal ||
|| 93 || 0-12-23-25 || 1-10/7-5/3-5/4 || utonal ||
|| 94 || 0-20-23-25 || 1-20/11-5/3-5/4 || utonal ||
|| 95 || 0-21-23-25 || 1-10/9-5/3-5/4 || utonal ||

=Pentads=
|| Number || Chord || Transversal || Type ||
|| 1 || 0-1-2-3-4 || 1-11/9-3/2-11/6-9/8 || rastmic ||
|| 2 || 0-1-2-3-5 || 1-11/9-3/2-11/6-11/8 || rastmic ||
|| 3 || 0-1-2-4-5 || 1-11/9-3/2-9/8-11/8 || rastmic ||
|| 4 || 0-1-3-4-5 || 1-11/9-11/6-9/8-11/8 || rastmic ||
|| 5 || 0-2-3-4-5 || 1-3/2-11/6-9/8-11/8 || rastmic ||
|| 6 || 0-3-4-5-8 || 1-11/6-9/8-11/8-14/11 || nofives ||
|| 7 || 0-1-4-5-9 || 1-11/9-9/8-11/8-14/9 || nofives ||
|| 8 || 0-4-5-8-9 || 1-9/8-11/8-14/11-14/9 || nofives ||
|| 9 || 0-1-3-4-12 || 1-11/9-11/6-9/8-10/7 || jove ||
|| 10 || 0-3-4-8-12 || 1-11/6-9/8-14/11-10/7 || hemififths ||
|| 11 || 0-1-4-9-12 || 1-11/9-9/8-14/9-10/7 || hemififths ||
|| 12 || 0-4-8-9-12 || 1-9/8-14/11-14/9-10/7 || hemififths ||
|| 13 || 0-3-8-11-12 || 1-11/6-14/11-7/6-10/7 || hemififths ||
|| 14 || 0-8-9-11-12 || 1-14/11-14/9-7/6-10/7 || jove ||
|| 15 || 0-1-2-4-13 || 1-11/9-3/2-9/8-7/4 || jove ||
|| 16 || 0-1-2-5-13 || 1-11/9-3/2-11/8-7/4 || jove ||
|| 17 || 0-1-4-5-13 || 1-11/9-9/8-11/8-7/4 || jove ||
|| 18 || 0-2-4-5-13 || 1-3/2-9/8-11/8-7/4 || otonal ||
|| 19 || 0-4-5-8-13 || 1-9/8-11/8-14/11-7/4 || nofives ||
|| 20 || 0-1-4-9-13 || 1-11/9-9/8-14/9-7/4 || hemififths ||
|| 21 || 0-1-5-9-13 || 1-11/9-11/8-14/9-7/4 || pele ||
|| 22 || 0-4-5-9-13 || 1-9/8-11/8-14/9-7/4 || pentacircle ||
|| 23 || 0-4-8-9-13 || 1-9/8-14/11-14/9-7/4 || pentacircle ||
|| 24 || 0-5-8-9-13 || 1-11/8-14/11-14/9-7/4 || nofives ||
|| 25 || 0-8-9-11-13 || 1-14/11-14/9-7/6-7/4 || utonal ||
|| 26 || 0-1-4-12-13 || 1-11/9-9/8-10/7-7/4 || jove ||
|| 27 || 0-4-8-12-13 || 1-9/8-14/11-10/7-7/4 || pele ||
|| 28 || 0-1-9-12-13 || 1-11/9-14/9-10/7-7/4 || jove ||
|| 29 || 0-4-9-12-13 || 1-9/8-14/9-10/7-7/4 || hemififths ||
|| 30 || 0-8-9-12-13 || 1-14/11-14/9-10/7-7/4 || jove ||
|| 31 || 0-8-11-12-13 || 1-14/11-7/6-10/7-7/4 || jove ||
|| 32 || 0-9-11-12-13 || 1-14/9-7/6-10/7-7/4 || jove ||
|| 33 || 0-8-9-11-20 || 1-14/11-14/9-7/6-20/11 || swetismic ||
|| 34 || 0-8-9-12-20 || 1-14/11-14/9-10/7-20/11 || jove ||
|| 35 || 0-8-11-12-20 || 1-14/11-7/6-10/7-20/11 || jove ||
|| 36 || 0-9-11-12-20 || 1-14/9-7/6-10/7-20/11 || swetismic ||
|| 37 || 0-1-9-12-21 || 1-11/9-14/9-10/7-10/9 || swetismic ||
|| 38 || 0-8-9-12-21 || 1-14/11-14/9-10/7-10/9 || jove ||
|| 39 || 0-1-9-13-21 || 1-11/9-14/9-7/4-10/9 || werckismic ||
|| 40 || 0-8-9-13-21 || 1-14/11-14/9-7/4-10/9 || werckismic ||
|| 41 || 0-1-12-13-21 || 1-11/9-10/7-7/4-10/9 || jove ||
|| 42 || 0-8-12-13-21 || 1-14/11-10/7-7/4-10/9 || werckismic ||
|| 43 || 0-9-12-13-21 || 1-14/9-10/7-7/4-10/9 || jove ||
|| 44 || 0-8-9-20-21 || 1-14/11-14/9-20/11-10/9 || jove ||
|| 45 || 0-8-12-20-21 || 1-14/11-10/7-20/11-10/9 || werckismic ||
|| 46 || 0-9-12-20-21 || 1-14/9-10/7-20/11-10/9 || swetismic ||
|| 47 || 0-2-3-11-23 || 1-3/2-11/6-7/6-5/3 || otonal ||
|| 48 || 0-3-11-12-23 || 1-11/6-7/6-10/7-5/3 || swetismic ||
|| 49 || 0-11-12-20-23 || 1-7/6-10/7-20/11-5/3 || swetismic ||
|| 50 || 0-12-20-21-23 || 1-10/7-20/11-10/9-5/3 || utonal ||
|| 51 || 0-2-4-5-25 || 1-3/2-9/8-11/8-5/4 || otonal ||
|| 52 || 0-2-4-13-25 || 1-3/2-9/8-7/4-5/4 || otonal ||
|| 53 || 0-2-5-13-25 || 1-3/2-11/8-7/4-5/4 || otonal ||
|| 54 || 0-4-5-13-25 || 1-9/8-11/8-7/4-5/4 || otonal ||
|| 55 || 0-4-12-13-25 || 1-9/8-10/7-7/4-5/4 || werckismic ||
|| 56 || 0-12-13-21-25 || 1-10/7-7/4-10/9-5/4 || werckismic ||
|| 57 || 0-12-20-21-25 || 1-10/7-20/11-10/9-5/4 || utonal ||
|| 58 || 0-12-20-23-25 || 1-10/7-20/11-5/3-5/4 || utonal ||
|| 59 || 0-12-21-23-25 || 1-10/7-10/9-5/3-5/4 || utonal ||
|| 60 || 0-20-21-23-25 || 1-20/11-10/9-5/3-5/4 || utonal ||

=Hexads=
|| Number || Chord || Transversal || Type ||
|| 1 || 0-1-2-3-4-5 || 1-11/9-3/2-11/6-9/8-11/8 || rastmic ||
|| 2 || 0-1-2-4-5-13 || 1-11/9-3/2-9/8-11/8-7/4 || jove ||
|| 3 || 0-1-4-5-9-13 || 1-11/9-9/8-11/8-14/9-7/4 || hemififths ||
|| 4 || 0-4-5-8-9-13 || 1-9/8-11/8-14/11-14/9-7/4 || nofives ||
|| 5 || 0-1-4-9-12-13 || 1-11/9-9/8-14/9-10/7-7/4 || hemififths ||
|| 6 || 0-4-8-9-12-13 || 1-9/8-14/11-14/9-10/7-7/4 || hemififths ||
|| 7 || 0-8-9-11-12-13 || 1-14/11-14/9-7/6-10/7-7/4 || jove ||
|| 8 || 0-8-9-11-12-20 || 1-14/11-14/9-7/6-10/7-20/11 || jove ||
|| 9 || 0-1-9-12-13-21 || 1-11/9-14/9-10/7-7/4-10/9 || jove ||
|| 10 || 0-8-9-12-13-21 || 1-14/11-14/9-10/7-7/4-10/9 || jove ||
|| 11 || 0-8-9-12-20-21 || 1-14/11-14/9-10/7-20/11-10/9 || jove ||
|| 12 || 0-2-4-5-13-25 || 1-3/2-9/8-11/8-7/4-5/4 || otonal ||
|| 13 || 0-12-20-21-23-25 || 1-10/7-20/11-10/9-5/3-5/4 || utonal ||

Original HTML content:

<html><head><title>Chords of hemififths</title></head><body>Below are listed the <a class="wiki_link" href="/Dyadic%20chord">dyadic chords</a> of 11-limit <a class="wiki_link" href="/Breedsmic%20temperaments#Hemififths">hemififths temperament</a>. The essentially just chords are typed as otonal, utonal, or ambitonal. Those requiring tempering only by 540/539 are swetismic, by 441/440 werckismic, by 896/891 pentacircle, by 243/242 rastmic, and by 1344/1331 hemimin. Those requiring tempering by any two of 540/539, 441/440 or 243/242 are labeled jove, and those requiring both 441/440 and 896/891 are labeled pele. The label &quot;nofives&quot; refers to the unnamed rank-three temperament tempering out 243/242, 896/891 and 1344/1331, and if any two of these are needed the chord is so labled. &quot;Nofives&quot; refers to the fact that it is in essence a no-fives version of hemififths; if the full hemififths is required because of the tempering out of three independent hemififths commas, the chord is labeled &quot;hemififths&quot;.<br />
<br />
A striking feature of these hemififths chords is that essentially just chords tend to be of higher complexity than essentially tempered chords. Hemififths has MOS of size 7, 10, 17 and 24, and even seven notes are well-supplied with chords, mostly but by no means entirely essentially tempered chords. Extending consideration to the 13-limit adds even more such chords.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Triads"></a><!-- ws:end:WikiTextHeadingRule:0 -->Triads</h1>


<table class="wiki_table">
    <tr>
        <td>Number<br />
</td>
        <td>Chord<br />
</td>
        <td>Transversal<br />
</td>
        <td>Type<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>0-1-2<br />
</td>
        <td>1-11/9-3/2<br />
</td>
        <td>rastmic<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>0-1-3<br />
</td>
        <td>1-11/9-11/6<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>0-2-3<br />
</td>
        <td>1-3/2-11/6<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>0-1-4<br />
</td>
        <td>1-11/9-9/8<br />
</td>
        <td>rastmic<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>0-2-4<br />
</td>
        <td>1-3/2-9/8<br />
</td>
        <td>ambitonal<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>0-3-4<br />
</td>
        <td>1-11/6-9/8<br />
</td>
        <td>rastmic<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>0-1-5<br />
</td>
        <td>1-11/9-11/8<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>0-2-5<br />
</td>
        <td>1-3/2-11/8<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>0-3-5<br />
</td>
        <td>1-11/6-11/8<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td>0-4-5<br />
</td>
        <td>1-9/8-11/8<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td>0-3-8<br />
</td>
        <td>1-11/6-14/11<br />
</td>
        <td>hemimin<br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td>0-4-8<br />
</td>
        <td>1-9/8-14/11<br />
</td>
        <td>pentacircle<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td>0-5-8<br />
</td>
        <td>1-11/8-14/11<br />
</td>
        <td>hemimin<br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td>0-1-9<br />
</td>
        <td>1-11/9-14/9<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td>0-4-9<br />
</td>
        <td>1-9/8-14/9<br />
</td>
        <td>pentacircle<br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td>0-5-9<br />
</td>
        <td>1-11/8-14/9<br />
</td>
        <td>pentacircle<br />
</td>
    </tr>
    <tr>
        <td>17<br />
</td>
        <td>0-8-9<br />
</td>
        <td>1-14/11-14/9<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>18<br />
</td>
        <td>0-2-11<br />
</td>
        <td>1-3/2-7/6<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>19<br />
</td>
        <td>0-3-11<br />
</td>
        <td>1-11/6-7/6<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>20<br />
</td>
        <td>0-8-11<br />
</td>
        <td>1-14/11-7/6<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>21<br />
</td>
        <td>0-9-11<br />
</td>
        <td>1-14/9-7/6<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>22<br />
</td>
        <td>0-1-12<br />
</td>
        <td>1-11/9-10/7<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>23<br />
</td>
        <td>0-3-12<br />
</td>
        <td>1-11/6-10/7<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>24<br />
</td>
        <td>0-4-12<br />
</td>
        <td>1-9/8-10/7<br />
</td>
        <td>werckismic<br />
</td>
    </tr>
    <tr>
        <td>25<br />
</td>
        <td>0-8-12<br />
</td>
        <td>1-14/11-10/7<br />
</td>
        <td>werckismic<br />
</td>
    </tr>
    <tr>
        <td>26<br />
</td>
        <td>0-9-12<br />
</td>
        <td>1-14/9-10/7<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>27<br />
</td>
        <td>0-11-12<br />
</td>
        <td>1-7/6-10/7<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>28<br />
</td>
        <td>0-1-13<br />
</td>
        <td>1-11/9-7/4<br />
</td>
        <td>werckismic<br />
</td>
    </tr>
    <tr>
        <td>29<br />
</td>
        <td>0-2-13<br />
</td>
        <td>1-3/2-7/4<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>30<br />
</td>
        <td>0-4-13<br />
</td>
        <td>1-9/8-7/4<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>31<br />
</td>
        <td>0-5-13<br />
</td>
        <td>1-11/8-7/4<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>32<br />
</td>
        <td>0-8-13<br />
</td>
        <td>1-14/11-7/4<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>33<br />
</td>
        <td>0-9-13<br />
</td>
        <td>1-14/9-7/4<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>34<br />
</td>
        <td>0-11-13<br />
</td>
        <td>1-7/6-7/4<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>35<br />
</td>
        <td>0-12-13<br />
</td>
        <td>1-10/7-7/4<br />
</td>
        <td>werckismic<br />
</td>
    </tr>
    <tr>
        <td>36<br />
</td>
        <td>0-8-20<br />
</td>
        <td>1-14/11-20/11<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>37<br />
</td>
        <td>0-9-20<br />
</td>
        <td>1-14/9-20/11<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>38<br />
</td>
        <td>0-11-20<br />
</td>
        <td>1-7/6-20/11<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>39<br />
</td>
        <td>0-12-20<br />
</td>
        <td>1-10/7-20/11<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>40<br />
</td>
        <td>0-1-21<br />
</td>
        <td>1-11/9-10/9<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>41<br />
</td>
        <td>0-8-21<br />
</td>
        <td>1-14/11-10/9<br />
</td>
        <td>werckismic<br />
</td>
    </tr>
    <tr>
        <td>42<br />
</td>
        <td>0-9-21<br />
</td>
        <td>1-14/9-10/9<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>43<br />
</td>
        <td>0-12-21<br />
</td>
        <td>1-10/7-10/9<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>44<br />
</td>
        <td>0-13-21<br />
</td>
        <td>1-7/4-10/9<br />
</td>
        <td>werckismic<br />
</td>
    </tr>
    <tr>
        <td>45<br />
</td>
        <td>0-20-21<br />
</td>
        <td>1-20/11-10/9<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>46<br />
</td>
        <td>0-2-23<br />
</td>
        <td>1-3/2-5/3<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>47<br />
</td>
        <td>0-3-23<br />
</td>
        <td>1-11/6-5/3<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>48<br />
</td>
        <td>0-11-23<br />
</td>
        <td>1-7/6-5/3<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>49<br />
</td>
        <td>0-12-23<br />
</td>
        <td>1-10/7-5/3<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>50<br />
</td>
        <td>0-20-23<br />
</td>
        <td>1-20/11-5/3<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>51<br />
</td>
        <td>0-21-23<br />
</td>
        <td>1-10/9-5/3<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>52<br />
</td>
        <td>0-2-25<br />
</td>
        <td>1-3/2-5/4<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>53<br />
</td>
        <td>0-4-25<br />
</td>
        <td>1-9/8-5/4<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>54<br />
</td>
        <td>0-5-25<br />
</td>
        <td>1-11/8-5/4<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>55<br />
</td>
        <td>0-12-25<br />
</td>
        <td>1-10/7-5/4<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>56<br />
</td>
        <td>0-13-25<br />
</td>
        <td>1-7/4-5/4<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>57<br />
</td>
        <td>0-20-25<br />
</td>
        <td>1-20/11-5/4<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>58<br />
</td>
        <td>0-21-25<br />
</td>
        <td>1-10/9-5/4<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>59<br />
</td>
        <td>0-23-25<br />
</td>
        <td>1-5/3-5/4<br />
</td>
        <td>utonal<br />
</td>
    </tr>
</table>

<br />
<!-- ws:start:WikiTextHeadingRule:2:&lt;h1&gt; --><h1 id="toc1"><a name="Tetrads"></a><!-- ws:end:WikiTextHeadingRule:2 -->Tetrads</h1>


<table class="wiki_table">
    <tr>
        <td>Number<br />
</td>
        <td>Chord<br />
</td>
        <td>Transversal<br />
</td>
        <td>Type<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>0-1-2-3<br />
</td>
        <td>1-11/9-3/2-11/6<br />
</td>
        <td>rastmic<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>0-1-2-4<br />
</td>
        <td>1-11/9-3/2-9/8<br />
</td>
        <td>rastmic<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>0-1-3-4<br />
</td>
        <td>1-11/9-11/6-9/8<br />
</td>
        <td>rastmic<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>0-2-3-4<br />
</td>
        <td>1-3/2-11/6-9/8<br />
</td>
        <td>rastmic<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>0-1-2-5<br />
</td>
        <td>1-11/9-3/2-11/8<br />
</td>
        <td>rastmic<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>0-1-3-5<br />
</td>
        <td>1-11/9-11/6-11/8<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>0-2-3-5<br />
</td>
        <td>1-3/2-11/6-11/8<br />
</td>
        <td>ambitonal<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>0-1-4-5<br />
</td>
        <td>1-11/9-9/8-11/8<br />
</td>
        <td>rastmic<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>0-2-4-5<br />
</td>
        <td>1-3/2-9/8-11/8<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td>0-3-4-5<br />
</td>
        <td>1-11/6-9/8-11/8<br />
</td>
        <td>rastmic<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td>0-3-4-8<br />
</td>
        <td>1-11/6-9/8-14/11<br />
</td>
        <td>nofives<br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td>0-3-5-8<br />
</td>
        <td>1-11/6-11/8-14/11<br />
</td>
        <td>hemimin<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td>0-4-5-8<br />
</td>
        <td>1-9/8-11/8-14/11<br />
</td>
        <td>nofives<br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td>0-1-4-9<br />
</td>
        <td>1-11/9-9/8-14/9<br />
</td>
        <td>nofives<br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td>0-1-5-9<br />
</td>
        <td>1-11/9-11/8-14/9<br />
</td>
        <td>pentacircle<br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td>0-4-5-9<br />
</td>
        <td>1-9/8-11/8-14/9<br />
</td>
        <td>pentacircle<br />
</td>
    </tr>
    <tr>
        <td>17<br />
</td>
        <td>0-4-8-9<br />
</td>
        <td>1-9/8-14/11-14/9<br />
</td>
        <td>pentacircle<br />
</td>
    </tr>
    <tr>
        <td>18<br />
</td>
        <td>0-5-8-9<br />
</td>
        <td>1-11/8-14/11-14/9<br />
</td>
        <td>nofives<br />
</td>
    </tr>
    <tr>
        <td>19<br />
</td>
        <td>0-2-3-11<br />
</td>
        <td>1-3/2-11/6-7/6<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>20<br />
</td>
        <td>0-3-8-11<br />
</td>
        <td>1-11/6-14/11-7/6<br />
</td>
        <td>hemimin<br />
</td>
    </tr>
    <tr>
        <td>21<br />
</td>
        <td>0-8-9-11<br />
</td>
        <td>1-14/11-14/9-7/6<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>22<br />
</td>
        <td>0-1-3-12<br />
</td>
        <td>1-11/9-11/6-10/7<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>23<br />
</td>
        <td>0-1-4-12<br />
</td>
        <td>1-11/9-9/8-10/7<br />
</td>
        <td>jove<br />
</td>
    </tr>
    <tr>
        <td>24<br />
</td>
        <td>0-3-4-12<br />
</td>
        <td>1-11/6-9/8-10/7<br />
</td>
        <td>jove<br />
</td>
    </tr>
    <tr>
        <td>25<br />
</td>
        <td>0-3-8-12<br />
</td>
        <td>1-11/6-14/11-10/7<br />
</td>
        <td>hemififths<br />
</td>
    </tr>
    <tr>
        <td>26<br />
</td>
        <td>0-4-8-12<br />
</td>
        <td>1-9/8-14/11-10/7<br />
</td>
        <td>pele<br />
</td>
    </tr>
    <tr>
        <td>27<br />
</td>
        <td>0-1-9-12<br />
</td>
        <td>1-11/9-14/9-10/7<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>28<br />
</td>
        <td>0-4-9-12<br />
</td>
        <td>1-9/8-14/9-10/7<br />
</td>
        <td>hemififths<br />
</td>
    </tr>
    <tr>
        <td>29<br />
</td>
        <td>0-8-9-12<br />
</td>
        <td>1-14/11-14/9-10/7<br />
</td>
        <td>jove<br />
</td>
    </tr>
    <tr>
        <td>30<br />
</td>
        <td>0-3-11-12<br />
</td>
        <td>1-11/6-7/6-10/7<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>31<br />
</td>
        <td>0-8-11-12<br />
</td>
        <td>1-14/11-7/6-10/7<br />
</td>
        <td>jove<br />
</td>
    </tr>
    <tr>
        <td>32<br />
</td>
        <td>0-9-11-12<br />
</td>
        <td>1-14/9-7/6-10/7<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>33<br />
</td>
        <td>0-1-2-13<br />
</td>
        <td>1-11/9-3/2-7/4<br />
</td>
        <td>jove<br />
</td>
    </tr>
    <tr>
        <td>34<br />
</td>
        <td>0-1-4-13<br />
</td>
        <td>1-11/9-9/8-7/4<br />
</td>
        <td>jove<br />
</td>
    </tr>
    <tr>
        <td>35<br />
</td>
        <td>0-2-4-13<br />
</td>
        <td>1-3/2-9/8-7/4<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>36<br />
</td>
        <td>0-1-5-13<br />
</td>
        <td>1-11/9-11/8-7/4<br />
</td>
        <td>werckismic<br />
</td>
    </tr>
    <tr>
        <td>37<br />
</td>
        <td>0-2-5-13<br />
</td>
        <td>1-3/2-11/8-7/4<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>38<br />
</td>
        <td>0-4-5-13<br />
</td>
        <td>1-9/8-11/8-7/4<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>39<br />
</td>
        <td>0-4-8-13<br />
</td>
        <td>1-9/8-14/11-7/4<br />
</td>
        <td>pentacircle<br />
</td>
    </tr>
    <tr>
        <td>40<br />
</td>
        <td>0-5-8-13<br />
</td>
        <td>1-11/8-14/11-7/4<br />
</td>
        <td>hemimin<br />
</td>
    </tr>
    <tr>
        <td>41<br />
</td>
        <td>0-1-9-13<br />
</td>
        <td>1-11/9-14/9-7/4<br />
</td>
        <td>werckismic<br />
</td>
    </tr>
    <tr>
        <td>42<br />
</td>
        <td>0-4-9-13<br />
</td>
        <td>1-9/8-14/9-7/4<br />
</td>
        <td>pentacircle<br />
</td>
    </tr>
    <tr>
        <td>43<br />
</td>
        <td>0-5-9-13<br />
</td>
        <td>1-11/8-14/9-7/4<br />
</td>
        <td>pentacircle<br />
</td>
    </tr>
    <tr>
        <td>44<br />
</td>
        <td>0-8-9-13<br />
</td>
        <td>1-14/11-14/9-7/4<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>45<br />
</td>
        <td>0-2-11-13<br />
</td>
        <td>1-3/2-7/6-7/4<br />
</td>
        <td>ambitonal<br />
</td>
    </tr>
    <tr>
        <td>46<br />
</td>
        <td>0-8-11-13<br />
</td>
        <td>1-14/11-7/6-7/4<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>47<br />
</td>
        <td>0-9-11-13<br />
</td>
        <td>1-14/9-7/6-7/4<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>48<br />
</td>
        <td>0-1-12-13<br />
</td>
        <td>1-11/9-10/7-7/4<br />
</td>
        <td>jove<br />
</td>
    </tr>
    <tr>
        <td>49<br />
</td>
        <td>0-4-12-13<br />
</td>
        <td>1-9/8-10/7-7/4<br />
</td>
        <td>werckismic<br />
</td>
    </tr>
    <tr>
        <td>50<br />
</td>
        <td>0-8-12-13<br />
</td>
        <td>1-14/11-10/7-7/4<br />
</td>
        <td>werckismic<br />
</td>
    </tr>
    <tr>
        <td>51<br />
</td>
        <td>0-9-12-13<br />
</td>
        <td>1-14/9-10/7-7/4<br />
</td>
        <td>jove<br />
</td>
    </tr>
    <tr>
        <td>52<br />
</td>
        <td>0-11-12-13<br />
</td>
        <td>1-7/6-10/7-7/4<br />
</td>
        <td>jove<br />
</td>
    </tr>
    <tr>
        <td>53<br />
</td>
        <td>0-8-9-20<br />
</td>
        <td>1-14/11-14/9-20/11<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>54<br />
</td>
        <td>0-8-11-20<br />
</td>
        <td>1-14/11-7/6-20/11<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>55<br />
</td>
        <td>0-9-11-20<br />
</td>
        <td>1-14/9-7/6-20/11<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>56<br />
</td>
        <td>0-8-12-20<br />
</td>
        <td>1-14/11-10/7-20/11<br />
</td>
        <td>werckismic<br />
</td>
    </tr>
    <tr>
        <td>57<br />
</td>
        <td>0-9-12-20<br />
</td>
        <td>1-14/9-10/7-20/11<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>58<br />
</td>
        <td>0-11-12-20<br />
</td>
        <td>1-7/6-10/7-20/11<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>59<br />
</td>
        <td>0-1-9-21<br />
</td>
        <td>1-11/9-14/9-10/9<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>60<br />
</td>
        <td>0-8-9-21<br />
</td>
        <td>1-14/11-14/9-10/9<br />
</td>
        <td>werckismic<br />
</td>
    </tr>
    <tr>
        <td>61<br />
</td>
        <td>0-1-12-21<br />
</td>
        <td>1-11/9-10/7-10/9<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>62<br />
</td>
        <td>0-8-12-21<br />
</td>
        <td>1-14/11-10/7-10/9<br />
</td>
        <td>werckismic<br />
</td>
    </tr>
    <tr>
        <td>63<br />
</td>
        <td>0-9-12-21<br />
</td>
        <td>1-14/9-10/7-10/9<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>64<br />
</td>
        <td>0-1-13-21<br />
</td>
        <td>1-11/9-7/4-10/9<br />
</td>
        <td>werckismic<br />
</td>
    </tr>
    <tr>
        <td>65<br />
</td>
        <td>0-8-13-21<br />
</td>
        <td>1-14/11-7/4-10/9<br />
</td>
        <td>werckismic<br />
</td>
    </tr>
    <tr>
        <td>66<br />
</td>
        <td>0-9-13-21<br />
</td>
        <td>1-14/9-7/4-10/9<br />
</td>
        <td>werckismic<br />
</td>
    </tr>
    <tr>
        <td>67<br />
</td>
        <td>0-12-13-21<br />
</td>
        <td>1-10/7-7/4-10/9<br />
</td>
        <td>werckismic<br />
</td>
    </tr>
    <tr>
        <td>68<br />
</td>
        <td>0-8-20-21<br />
</td>
        <td>1-14/11-20/11-10/9<br />
</td>
        <td>werckismic<br />
</td>
    </tr>
    <tr>
        <td>69<br />
</td>
        <td>0-9-20-21<br />
</td>
        <td>1-14/9-20/11-10/9<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>70<br />
</td>
        <td>0-12-20-21<br />
</td>
        <td>1-10/7-20/11-10/9<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>71<br />
</td>
        <td>0-2-3-23<br />
</td>
        <td>1-3/2-11/6-5/3<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>72<br />
</td>
        <td>0-2-11-23<br />
</td>
        <td>1-3/2-7/6-5/3<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>73<br />
</td>
        <td>0-3-11-23<br />
</td>
        <td>1-11/6-7/6-5/3<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>74<br />
</td>
        <td>0-3-12-23<br />
</td>
        <td>1-11/6-10/7-5/3<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>75<br />
</td>
        <td>0-11-12-23<br />
</td>
        <td>1-7/6-10/7-5/3<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>76<br />
</td>
        <td>0-11-20-23<br />
</td>
        <td>1-7/6-20/11-5/3<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>77<br />
</td>
        <td>0-12-20-23<br />
</td>
        <td>1-10/7-20/11-5/3<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>78<br />
</td>
        <td>0-12-21-23<br />
</td>
        <td>1-10/7-10/9-5/3<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>79<br />
</td>
        <td>0-20-21-23<br />
</td>
        <td>1-20/11-10/9-5/3<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>80<br />
</td>
        <td>0-2-4-25<br />
</td>
        <td>1-3/2-9/8-5/4<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>81<br />
</td>
        <td>0-2-5-25<br />
</td>
        <td>1-3/2-11/8-5/4<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>82<br />
</td>
        <td>0-4-5-25<br />
</td>
        <td>1-9/8-11/8-5/4<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>83<br />
</td>
        <td>0-4-12-25<br />
</td>
        <td>1-9/8-10/7-5/4<br />
</td>
        <td>werckismic<br />
</td>
    </tr>
    <tr>
        <td>84<br />
</td>
        <td>0-2-13-25<br />
</td>
        <td>1-3/2-7/4-5/4<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>85<br />
</td>
        <td>0-4-13-25<br />
</td>
        <td>1-9/8-7/4-5/4<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>86<br />
</td>
        <td>0-5-13-25<br />
</td>
        <td>1-11/8-7/4-5/4<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>87<br />
</td>
        <td>0-12-13-25<br />
</td>
        <td>1-10/7-7/4-5/4<br />
</td>
        <td>werckismic<br />
</td>
    </tr>
    <tr>
        <td>88<br />
</td>
        <td>0-12-20-25<br />
</td>
        <td>1-10/7-20/11-5/4<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>89<br />
</td>
        <td>0-12-21-25<br />
</td>
        <td>1-10/7-10/9-5/4<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>90<br />
</td>
        <td>0-13-21-25<br />
</td>
        <td>1-7/4-10/9-5/4<br />
</td>
        <td>werckismic<br />
</td>
    </tr>
    <tr>
        <td>91<br />
</td>
        <td>0-20-21-25<br />
</td>
        <td>1-20/11-10/9-5/4<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>92<br />
</td>
        <td>0-2-23-25<br />
</td>
        <td>1-3/2-5/3-5/4<br />
</td>
        <td>ambitonal<br />
</td>
    </tr>
    <tr>
        <td>93<br />
</td>
        <td>0-12-23-25<br />
</td>
        <td>1-10/7-5/3-5/4<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>94<br />
</td>
        <td>0-20-23-25<br />
</td>
        <td>1-20/11-5/3-5/4<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>95<br />
</td>
        <td>0-21-23-25<br />
</td>
        <td>1-10/9-5/3-5/4<br />
</td>
        <td>utonal<br />
</td>
    </tr>
</table>

<br />
<!-- ws:start:WikiTextHeadingRule:4:&lt;h1&gt; --><h1 id="toc2"><a name="Pentads"></a><!-- ws:end:WikiTextHeadingRule:4 -->Pentads</h1>


<table class="wiki_table">
    <tr>
        <td>Number<br />
</td>
        <td>Chord<br />
</td>
        <td>Transversal<br />
</td>
        <td>Type<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>0-1-2-3-4<br />
</td>
        <td>1-11/9-3/2-11/6-9/8<br />
</td>
        <td>rastmic<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>0-1-2-3-5<br />
</td>
        <td>1-11/9-3/2-11/6-11/8<br />
</td>
        <td>rastmic<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>0-1-2-4-5<br />
</td>
        <td>1-11/9-3/2-9/8-11/8<br />
</td>
        <td>rastmic<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>0-1-3-4-5<br />
</td>
        <td>1-11/9-11/6-9/8-11/8<br />
</td>
        <td>rastmic<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>0-2-3-4-5<br />
</td>
        <td>1-3/2-11/6-9/8-11/8<br />
</td>
        <td>rastmic<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>0-3-4-5-8<br />
</td>
        <td>1-11/6-9/8-11/8-14/11<br />
</td>
        <td>nofives<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>0-1-4-5-9<br />
</td>
        <td>1-11/9-9/8-11/8-14/9<br />
</td>
        <td>nofives<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>0-4-5-8-9<br />
</td>
        <td>1-9/8-11/8-14/11-14/9<br />
</td>
        <td>nofives<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>0-1-3-4-12<br />
</td>
        <td>1-11/9-11/6-9/8-10/7<br />
</td>
        <td>jove<br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td>0-3-4-8-12<br />
</td>
        <td>1-11/6-9/8-14/11-10/7<br />
</td>
        <td>hemififths<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td>0-1-4-9-12<br />
</td>
        <td>1-11/9-9/8-14/9-10/7<br />
</td>
        <td>hemififths<br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td>0-4-8-9-12<br />
</td>
        <td>1-9/8-14/11-14/9-10/7<br />
</td>
        <td>hemififths<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td>0-3-8-11-12<br />
</td>
        <td>1-11/6-14/11-7/6-10/7<br />
</td>
        <td>hemififths<br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td>0-8-9-11-12<br />
</td>
        <td>1-14/11-14/9-7/6-10/7<br />
</td>
        <td>jove<br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td>0-1-2-4-13<br />
</td>
        <td>1-11/9-3/2-9/8-7/4<br />
</td>
        <td>jove<br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td>0-1-2-5-13<br />
</td>
        <td>1-11/9-3/2-11/8-7/4<br />
</td>
        <td>jove<br />
</td>
    </tr>
    <tr>
        <td>17<br />
</td>
        <td>0-1-4-5-13<br />
</td>
        <td>1-11/9-9/8-11/8-7/4<br />
</td>
        <td>jove<br />
</td>
    </tr>
    <tr>
        <td>18<br />
</td>
        <td>0-2-4-5-13<br />
</td>
        <td>1-3/2-9/8-11/8-7/4<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>19<br />
</td>
        <td>0-4-5-8-13<br />
</td>
        <td>1-9/8-11/8-14/11-7/4<br />
</td>
        <td>nofives<br />
</td>
    </tr>
    <tr>
        <td>20<br />
</td>
        <td>0-1-4-9-13<br />
</td>
        <td>1-11/9-9/8-14/9-7/4<br />
</td>
        <td>hemififths<br />
</td>
    </tr>
    <tr>
        <td>21<br />
</td>
        <td>0-1-5-9-13<br />
</td>
        <td>1-11/9-11/8-14/9-7/4<br />
</td>
        <td>pele<br />
</td>
    </tr>
    <tr>
        <td>22<br />
</td>
        <td>0-4-5-9-13<br />
</td>
        <td>1-9/8-11/8-14/9-7/4<br />
</td>
        <td>pentacircle<br />
</td>
    </tr>
    <tr>
        <td>23<br />
</td>
        <td>0-4-8-9-13<br />
</td>
        <td>1-9/8-14/11-14/9-7/4<br />
</td>
        <td>pentacircle<br />
</td>
    </tr>
    <tr>
        <td>24<br />
</td>
        <td>0-5-8-9-13<br />
</td>
        <td>1-11/8-14/11-14/9-7/4<br />
</td>
        <td>nofives<br />
</td>
    </tr>
    <tr>
        <td>25<br />
</td>
        <td>0-8-9-11-13<br />
</td>
        <td>1-14/11-14/9-7/6-7/4<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>26<br />
</td>
        <td>0-1-4-12-13<br />
</td>
        <td>1-11/9-9/8-10/7-7/4<br />
</td>
        <td>jove<br />
</td>
    </tr>
    <tr>
        <td>27<br />
</td>
        <td>0-4-8-12-13<br />
</td>
        <td>1-9/8-14/11-10/7-7/4<br />
</td>
        <td>pele<br />
</td>
    </tr>
    <tr>
        <td>28<br />
</td>
        <td>0-1-9-12-13<br />
</td>
        <td>1-11/9-14/9-10/7-7/4<br />
</td>
        <td>jove<br />
</td>
    </tr>
    <tr>
        <td>29<br />
</td>
        <td>0-4-9-12-13<br />
</td>
        <td>1-9/8-14/9-10/7-7/4<br />
</td>
        <td>hemififths<br />
</td>
    </tr>
    <tr>
        <td>30<br />
</td>
        <td>0-8-9-12-13<br />
</td>
        <td>1-14/11-14/9-10/7-7/4<br />
</td>
        <td>jove<br />
</td>
    </tr>
    <tr>
        <td>31<br />
</td>
        <td>0-8-11-12-13<br />
</td>
        <td>1-14/11-7/6-10/7-7/4<br />
</td>
        <td>jove<br />
</td>
    </tr>
    <tr>
        <td>32<br />
</td>
        <td>0-9-11-12-13<br />
</td>
        <td>1-14/9-7/6-10/7-7/4<br />
</td>
        <td>jove<br />
</td>
    </tr>
    <tr>
        <td>33<br />
</td>
        <td>0-8-9-11-20<br />
</td>
        <td>1-14/11-14/9-7/6-20/11<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>34<br />
</td>
        <td>0-8-9-12-20<br />
</td>
        <td>1-14/11-14/9-10/7-20/11<br />
</td>
        <td>jove<br />
</td>
    </tr>
    <tr>
        <td>35<br />
</td>
        <td>0-8-11-12-20<br />
</td>
        <td>1-14/11-7/6-10/7-20/11<br />
</td>
        <td>jove<br />
</td>
    </tr>
    <tr>
        <td>36<br />
</td>
        <td>0-9-11-12-20<br />
</td>
        <td>1-14/9-7/6-10/7-20/11<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>37<br />
</td>
        <td>0-1-9-12-21<br />
</td>
        <td>1-11/9-14/9-10/7-10/9<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>38<br />
</td>
        <td>0-8-9-12-21<br />
</td>
        <td>1-14/11-14/9-10/7-10/9<br />
</td>
        <td>jove<br />
</td>
    </tr>
    <tr>
        <td>39<br />
</td>
        <td>0-1-9-13-21<br />
</td>
        <td>1-11/9-14/9-7/4-10/9<br />
</td>
        <td>werckismic<br />
</td>
    </tr>
    <tr>
        <td>40<br />
</td>
        <td>0-8-9-13-21<br />
</td>
        <td>1-14/11-14/9-7/4-10/9<br />
</td>
        <td>werckismic<br />
</td>
    </tr>
    <tr>
        <td>41<br />
</td>
        <td>0-1-12-13-21<br />
</td>
        <td>1-11/9-10/7-7/4-10/9<br />
</td>
        <td>jove<br />
</td>
    </tr>
    <tr>
        <td>42<br />
</td>
        <td>0-8-12-13-21<br />
</td>
        <td>1-14/11-10/7-7/4-10/9<br />
</td>
        <td>werckismic<br />
</td>
    </tr>
    <tr>
        <td>43<br />
</td>
        <td>0-9-12-13-21<br />
</td>
        <td>1-14/9-10/7-7/4-10/9<br />
</td>
        <td>jove<br />
</td>
    </tr>
    <tr>
        <td>44<br />
</td>
        <td>0-8-9-20-21<br />
</td>
        <td>1-14/11-14/9-20/11-10/9<br />
</td>
        <td>jove<br />
</td>
    </tr>
    <tr>
        <td>45<br />
</td>
        <td>0-8-12-20-21<br />
</td>
        <td>1-14/11-10/7-20/11-10/9<br />
</td>
        <td>werckismic<br />
</td>
    </tr>
    <tr>
        <td>46<br />
</td>
        <td>0-9-12-20-21<br />
</td>
        <td>1-14/9-10/7-20/11-10/9<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>47<br />
</td>
        <td>0-2-3-11-23<br />
</td>
        <td>1-3/2-11/6-7/6-5/3<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>48<br />
</td>
        <td>0-3-11-12-23<br />
</td>
        <td>1-11/6-7/6-10/7-5/3<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>49<br />
</td>
        <td>0-11-12-20-23<br />
</td>
        <td>1-7/6-10/7-20/11-5/3<br />
</td>
        <td>swetismic<br />
</td>
    </tr>
    <tr>
        <td>50<br />
</td>
        <td>0-12-20-21-23<br />
</td>
        <td>1-10/7-20/11-10/9-5/3<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>51<br />
</td>
        <td>0-2-4-5-25<br />
</td>
        <td>1-3/2-9/8-11/8-5/4<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>52<br />
</td>
        <td>0-2-4-13-25<br />
</td>
        <td>1-3/2-9/8-7/4-5/4<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>53<br />
</td>
        <td>0-2-5-13-25<br />
</td>
        <td>1-3/2-11/8-7/4-5/4<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>54<br />
</td>
        <td>0-4-5-13-25<br />
</td>
        <td>1-9/8-11/8-7/4-5/4<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>55<br />
</td>
        <td>0-4-12-13-25<br />
</td>
        <td>1-9/8-10/7-7/4-5/4<br />
</td>
        <td>werckismic<br />
</td>
    </tr>
    <tr>
        <td>56<br />
</td>
        <td>0-12-13-21-25<br />
</td>
        <td>1-10/7-7/4-10/9-5/4<br />
</td>
        <td>werckismic<br />
</td>
    </tr>
    <tr>
        <td>57<br />
</td>
        <td>0-12-20-21-25<br />
</td>
        <td>1-10/7-20/11-10/9-5/4<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>58<br />
</td>
        <td>0-12-20-23-25<br />
</td>
        <td>1-10/7-20/11-5/3-5/4<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>59<br />
</td>
        <td>0-12-21-23-25<br />
</td>
        <td>1-10/7-10/9-5/3-5/4<br />
</td>
        <td>utonal<br />
</td>
    </tr>
    <tr>
        <td>60<br />
</td>
        <td>0-20-21-23-25<br />
</td>
        <td>1-20/11-10/9-5/3-5/4<br />
</td>
        <td>utonal<br />
</td>
    </tr>
</table>

<br />
<!-- ws:start:WikiTextHeadingRule:6:&lt;h1&gt; --><h1 id="toc3"><a name="Hexads"></a><!-- ws:end:WikiTextHeadingRule:6 -->Hexads</h1>


<table class="wiki_table">
    <tr>
        <td>Number<br />
</td>
        <td>Chord<br />
</td>
        <td>Transversal<br />
</td>
        <td>Type<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>0-1-2-3-4-5<br />
</td>
        <td>1-11/9-3/2-11/6-9/8-11/8<br />
</td>
        <td>rastmic<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>0-1-2-4-5-13<br />
</td>
        <td>1-11/9-3/2-9/8-11/8-7/4<br />
</td>
        <td>jove<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>0-1-4-5-9-13<br />
</td>
        <td>1-11/9-9/8-11/8-14/9-7/4<br />
</td>
        <td>hemififths<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>0-4-5-8-9-13<br />
</td>
        <td>1-9/8-11/8-14/11-14/9-7/4<br />
</td>
        <td>nofives<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>0-1-4-9-12-13<br />
</td>
        <td>1-11/9-9/8-14/9-10/7-7/4<br />
</td>
        <td>hemififths<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>0-4-8-9-12-13<br />
</td>
        <td>1-9/8-14/11-14/9-10/7-7/4<br />
</td>
        <td>hemififths<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>0-8-9-11-12-13<br />
</td>
        <td>1-14/11-14/9-7/6-10/7-7/4<br />
</td>
        <td>jove<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>0-8-9-11-12-20<br />
</td>
        <td>1-14/11-14/9-7/6-10/7-20/11<br />
</td>
        <td>jove<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>0-1-9-12-13-21<br />
</td>
        <td>1-11/9-14/9-10/7-7/4-10/9<br />
</td>
        <td>jove<br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td>0-8-9-12-13-21<br />
</td>
        <td>1-14/11-14/9-10/7-7/4-10/9<br />
</td>
        <td>jove<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td>0-8-9-12-20-21<br />
</td>
        <td>1-14/11-14/9-10/7-20/11-10/9<br />
</td>
        <td>jove<br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td>0-2-4-5-13-25<br />
</td>
        <td>1-3/2-9/8-11/8-7/4-5/4<br />
</td>
        <td>otonal<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td>0-12-20-21-23-25<br />
</td>
        <td>1-10/7-20/11-10/9-5/3-5/4<br />
</td>
        <td>utonal<br />
</td>
    </tr>
</table>

</body></html>