Hemififths/Chords
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author genewardsmith and made on 2011-12-21 15:02:00 UTC.
- The original revision id was 287999812.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
Below are listed the [[Dyadic chord|dyadic chords]] of 11-limit [[Breedsmic temperaments#Hemififths|hemififths temperament]]. The essentially just chords are typed as otonal, utonal, or ambitonal. Those requiring tempering only by 540/539 are swetismic, by 441/440 werckismic, by 896/891 pentacircle, by 243/242 rastmic, and by 1344/1331 hemimin. Those requiring tempering by any two of 540/539, 441/440 or 243/242 are labeled jove, and those requiring both 441/440 and 896/891 are labeled pele. The label "nofives" refers to the unnamed rank-three temperament tempering out 243/242, 896/891 and 1344/1331, and if any two of these are needed the chord is so labled. "Nofives" refers to the fact that it is in essence a no-fives version of hemififths; if the full hemififths is required because of the tempering out of three independent hemififths commas, the chord is labeled "hemififths". A striking feature of these hemififths chords is that essentially just chords tend to be of higher complexity than essentially tempered chords. Hemififths has MOS of size 7, 10, 17 and 24, and even seven notes are well-supplied with chords, mostly but by no means entirely essentially tempered chords. Extending consideration to the 13-limit adds even more such chords. =Triads= || Number || Chord || Transversal || Type || || 1 || 0-1-2 || 1-11/9-3/2 || rastmic || || 2 || 0-1-3 || 1-11/9-11/6 || utonal || || 3 || 0-2-3 || 1-3/2-11/6 || otonal || || 4 || 0-1-4 || 1-11/9-9/8 || rastmic || || 5 || 0-2-4 || 1-3/2-9/8 || ambitonal || || 6 || 0-3-4 || 1-11/6-9/8 || rastmic || || 7 || 0-1-5 || 1-11/9-11/8 || utonal || || 8 || 0-2-5 || 1-3/2-11/8 || otonal || || 9 || 0-3-5 || 1-11/6-11/8 || utonal || || 10 || 0-4-5 || 1-9/8-11/8 || otonal || || 11 || 0-3-8 || 1-11/6-14/11 || hemimin || || 12 || 0-4-8 || 1-9/8-14/11 || pentacircle || || 13 || 0-5-8 || 1-11/8-14/11 || hemimin || || 14 || 0-1-9 || 1-11/9-14/9 || otonal || || 15 || 0-4-9 || 1-9/8-14/9 || pentacircle || || 16 || 0-5-9 || 1-11/8-14/9 || pentacircle || || 17 || 0-8-9 || 1-14/11-14/9 || utonal || || 18 || 0-2-11 || 1-3/2-7/6 || otonal || || 19 || 0-3-11 || 1-11/6-7/6 || otonal || || 20 || 0-8-11 || 1-14/11-7/6 || utonal || || 21 || 0-9-11 || 1-14/9-7/6 || utonal || || 22 || 0-1-12 || 1-11/9-10/7 || swetismic || || 23 || 0-3-12 || 1-11/6-10/7 || swetismic || || 24 || 0-4-12 || 1-9/8-10/7 || werckismic || || 25 || 0-8-12 || 1-14/11-10/7 || werckismic || || 26 || 0-9-12 || 1-14/9-10/7 || swetismic || || 27 || 0-11-12 || 1-7/6-10/7 || swetismic || || 28 || 0-1-13 || 1-11/9-7/4 || werckismic || || 29 || 0-2-13 || 1-3/2-7/4 || otonal || || 30 || 0-4-13 || 1-9/8-7/4 || otonal || || 31 || 0-5-13 || 1-11/8-7/4 || otonal || || 32 || 0-8-13 || 1-14/11-7/4 || utonal || || 33 || 0-9-13 || 1-14/9-7/4 || utonal || || 34 || 0-11-13 || 1-7/6-7/4 || utonal || || 35 || 0-12-13 || 1-10/7-7/4 || werckismic || || 36 || 0-8-20 || 1-14/11-20/11 || otonal || || 37 || 0-9-20 || 1-14/9-20/11 || swetismic || || 38 || 0-11-20 || 1-7/6-20/11 || swetismic || || 39 || 0-12-20 || 1-10/7-20/11 || utonal || || 40 || 0-1-21 || 1-11/9-10/9 || otonal || || 41 || 0-8-21 || 1-14/11-10/9 || werckismic || || 42 || 0-9-21 || 1-14/9-10/9 || otonal || || 43 || 0-12-21 || 1-10/7-10/9 || utonal || || 44 || 0-13-21 || 1-7/4-10/9 || werckismic || || 45 || 0-20-21 || 1-20/11-10/9 || utonal || || 46 || 0-2-23 || 1-3/2-5/3 || otonal || || 47 || 0-3-23 || 1-11/6-5/3 || otonal || || 48 || 0-11-23 || 1-7/6-5/3 || otonal || || 49 || 0-12-23 || 1-10/7-5/3 || utonal || || 50 || 0-20-23 || 1-20/11-5/3 || utonal || || 51 || 0-21-23 || 1-10/9-5/3 || utonal || || 52 || 0-2-25 || 1-3/2-5/4 || otonal || || 53 || 0-4-25 || 1-9/8-5/4 || otonal || || 54 || 0-5-25 || 1-11/8-5/4 || otonal || || 55 || 0-12-25 || 1-10/7-5/4 || utonal || || 56 || 0-13-25 || 1-7/4-5/4 || otonal || || 57 || 0-20-25 || 1-20/11-5/4 || utonal || || 58 || 0-21-25 || 1-10/9-5/4 || utonal || || 59 || 0-23-25 || 1-5/3-5/4 || utonal || =Tetrads= || Number || Chord || Transversal || Type || || 1 || 0-1-2-3 || 1-11/9-3/2-11/6 || rastmic || || 2 || 0-1-2-4 || 1-11/9-3/2-9/8 || rastmic || || 3 || 0-1-3-4 || 1-11/9-11/6-9/8 || rastmic || || 4 || 0-2-3-4 || 1-3/2-11/6-9/8 || rastmic || || 5 || 0-1-2-5 || 1-11/9-3/2-11/8 || rastmic || || 6 || 0-1-3-5 || 1-11/9-11/6-11/8 || utonal || || 7 || 0-2-3-5 || 1-3/2-11/6-11/8 || ambitonal || || 8 || 0-1-4-5 || 1-11/9-9/8-11/8 || rastmic || || 9 || 0-2-4-5 || 1-3/2-9/8-11/8 || otonal || || 10 || 0-3-4-5 || 1-11/6-9/8-11/8 || rastmic || || 11 || 0-3-4-8 || 1-11/6-9/8-14/11 || nofives || || 12 || 0-3-5-8 || 1-11/6-11/8-14/11 || hemimin || || 13 || 0-4-5-8 || 1-9/8-11/8-14/11 || nofives || || 14 || 0-1-4-9 || 1-11/9-9/8-14/9 || nofives || || 15 || 0-1-5-9 || 1-11/9-11/8-14/9 || pentacircle || || 16 || 0-4-5-9 || 1-9/8-11/8-14/9 || pentacircle || || 17 || 0-4-8-9 || 1-9/8-14/11-14/9 || pentacircle || || 18 || 0-5-8-9 || 1-11/8-14/11-14/9 || nofives || || 19 || 0-2-3-11 || 1-3/2-11/6-7/6 || otonal || || 20 || 0-3-8-11 || 1-11/6-14/11-7/6 || hemimin || || 21 || 0-8-9-11 || 1-14/11-14/9-7/6 || utonal || || 22 || 0-1-3-12 || 1-11/9-11/6-10/7 || swetismic || || 23 || 0-1-4-12 || 1-11/9-9/8-10/7 || jove || || 24 || 0-3-4-12 || 1-11/6-9/8-10/7 || jove || || 25 || 0-3-8-12 || 1-11/6-14/11-10/7 || hemififths || || 26 || 0-4-8-12 || 1-9/8-14/11-10/7 || pele || || 27 || 0-1-9-12 || 1-11/9-14/9-10/7 || swetismic || || 28 || 0-4-9-12 || 1-9/8-14/9-10/7 || hemififths || || 29 || 0-8-9-12 || 1-14/11-14/9-10/7 || jove || || 30 || 0-3-11-12 || 1-11/6-7/6-10/7 || swetismic || || 31 || 0-8-11-12 || 1-14/11-7/6-10/7 || jove || || 32 || 0-9-11-12 || 1-14/9-7/6-10/7 || swetismic || || 33 || 0-1-2-13 || 1-11/9-3/2-7/4 || jove || || 34 || 0-1-4-13 || 1-11/9-9/8-7/4 || jove || || 35 || 0-2-4-13 || 1-3/2-9/8-7/4 || otonal || || 36 || 0-1-5-13 || 1-11/9-11/8-7/4 || werckismic || || 37 || 0-2-5-13 || 1-3/2-11/8-7/4 || otonal || || 38 || 0-4-5-13 || 1-9/8-11/8-7/4 || otonal || || 39 || 0-4-8-13 || 1-9/8-14/11-7/4 || pentacircle || || 40 || 0-5-8-13 || 1-11/8-14/11-7/4 || hemimin || || 41 || 0-1-9-13 || 1-11/9-14/9-7/4 || werckismic || || 42 || 0-4-9-13 || 1-9/8-14/9-7/4 || pentacircle || || 43 || 0-5-9-13 || 1-11/8-14/9-7/4 || pentacircle || || 44 || 0-8-9-13 || 1-14/11-14/9-7/4 || utonal || || 45 || 0-2-11-13 || 1-3/2-7/6-7/4 || ambitonal || || 46 || 0-8-11-13 || 1-14/11-7/6-7/4 || utonal || || 47 || 0-9-11-13 || 1-14/9-7/6-7/4 || utonal || || 48 || 0-1-12-13 || 1-11/9-10/7-7/4 || jove || || 49 || 0-4-12-13 || 1-9/8-10/7-7/4 || werckismic || || 50 || 0-8-12-13 || 1-14/11-10/7-7/4 || werckismic || || 51 || 0-9-12-13 || 1-14/9-10/7-7/4 || jove || || 52 || 0-11-12-13 || 1-7/6-10/7-7/4 || jove || || 53 || 0-8-9-20 || 1-14/11-14/9-20/11 || swetismic || || 54 || 0-8-11-20 || 1-14/11-7/6-20/11 || swetismic || || 55 || 0-9-11-20 || 1-14/9-7/6-20/11 || swetismic || || 56 || 0-8-12-20 || 1-14/11-10/7-20/11 || werckismic || || 57 || 0-9-12-20 || 1-14/9-10/7-20/11 || swetismic || || 58 || 0-11-12-20 || 1-7/6-10/7-20/11 || swetismic || || 59 || 0-1-9-21 || 1-11/9-14/9-10/9 || otonal || || 60 || 0-8-9-21 || 1-14/11-14/9-10/9 || werckismic || || 61 || 0-1-12-21 || 1-11/9-10/7-10/9 || swetismic || || 62 || 0-8-12-21 || 1-14/11-10/7-10/9 || werckismic || || 63 || 0-9-12-21 || 1-14/9-10/7-10/9 || swetismic || || 64 || 0-1-13-21 || 1-11/9-7/4-10/9 || werckismic || || 65 || 0-8-13-21 || 1-14/11-7/4-10/9 || werckismic || || 66 || 0-9-13-21 || 1-14/9-7/4-10/9 || werckismic || || 67 || 0-12-13-21 || 1-10/7-7/4-10/9 || werckismic || || 68 || 0-8-20-21 || 1-14/11-20/11-10/9 || werckismic || || 69 || 0-9-20-21 || 1-14/9-20/11-10/9 || swetismic || || 70 || 0-12-20-21 || 1-10/7-20/11-10/9 || utonal || || 71 || 0-2-3-23 || 1-3/2-11/6-5/3 || otonal || || 72 || 0-2-11-23 || 1-3/2-7/6-5/3 || otonal || || 73 || 0-3-11-23 || 1-11/6-7/6-5/3 || otonal || || 74 || 0-3-12-23 || 1-11/6-10/7-5/3 || swetismic || || 75 || 0-11-12-23 || 1-7/6-10/7-5/3 || swetismic || || 76 || 0-11-20-23 || 1-7/6-20/11-5/3 || swetismic || || 77 || 0-12-20-23 || 1-10/7-20/11-5/3 || utonal || || 78 || 0-12-21-23 || 1-10/7-10/9-5/3 || utonal || || 79 || 0-20-21-23 || 1-20/11-10/9-5/3 || utonal || || 80 || 0-2-4-25 || 1-3/2-9/8-5/4 || otonal || || 81 || 0-2-5-25 || 1-3/2-11/8-5/4 || otonal || || 82 || 0-4-5-25 || 1-9/8-11/8-5/4 || otonal || || 83 || 0-4-12-25 || 1-9/8-10/7-5/4 || werckismic || || 84 || 0-2-13-25 || 1-3/2-7/4-5/4 || otonal || || 85 || 0-4-13-25 || 1-9/8-7/4-5/4 || otonal || || 86 || 0-5-13-25 || 1-11/8-7/4-5/4 || otonal || || 87 || 0-12-13-25 || 1-10/7-7/4-5/4 || werckismic || || 88 || 0-12-20-25 || 1-10/7-20/11-5/4 || utonal || || 89 || 0-12-21-25 || 1-10/7-10/9-5/4 || utonal || || 90 || 0-13-21-25 || 1-7/4-10/9-5/4 || werckismic || || 91 || 0-20-21-25 || 1-20/11-10/9-5/4 || utonal || || 92 || 0-2-23-25 || 1-3/2-5/3-5/4 || ambitonal || || 93 || 0-12-23-25 || 1-10/7-5/3-5/4 || utonal || || 94 || 0-20-23-25 || 1-20/11-5/3-5/4 || utonal || || 95 || 0-21-23-25 || 1-10/9-5/3-5/4 || utonal || =Pentads= || Number || Chord || Transversal || Type || || 1 || 0-1-2-3-4 || 1-11/9-3/2-11/6-9/8 || rastmic || || 2 || 0-1-2-3-5 || 1-11/9-3/2-11/6-11/8 || rastmic || || 3 || 0-1-2-4-5 || 1-11/9-3/2-9/8-11/8 || rastmic || || 4 || 0-1-3-4-5 || 1-11/9-11/6-9/8-11/8 || rastmic || || 5 || 0-2-3-4-5 || 1-3/2-11/6-9/8-11/8 || rastmic || || 6 || 0-3-4-5-8 || 1-11/6-9/8-11/8-14/11 || nofives || || 7 || 0-1-4-5-9 || 1-11/9-9/8-11/8-14/9 || nofives || || 8 || 0-4-5-8-9 || 1-9/8-11/8-14/11-14/9 || nofives || || 9 || 0-1-3-4-12 || 1-11/9-11/6-9/8-10/7 || jove || || 10 || 0-3-4-8-12 || 1-11/6-9/8-14/11-10/7 || hemififths || || 11 || 0-1-4-9-12 || 1-11/9-9/8-14/9-10/7 || hemififths || || 12 || 0-4-8-9-12 || 1-9/8-14/11-14/9-10/7 || hemififths || || 13 || 0-3-8-11-12 || 1-11/6-14/11-7/6-10/7 || hemififths || || 14 || 0-8-9-11-12 || 1-14/11-14/9-7/6-10/7 || jove || || 15 || 0-1-2-4-13 || 1-11/9-3/2-9/8-7/4 || jove || || 16 || 0-1-2-5-13 || 1-11/9-3/2-11/8-7/4 || jove || || 17 || 0-1-4-5-13 || 1-11/9-9/8-11/8-7/4 || jove || || 18 || 0-2-4-5-13 || 1-3/2-9/8-11/8-7/4 || otonal || || 19 || 0-4-5-8-13 || 1-9/8-11/8-14/11-7/4 || nofives || || 20 || 0-1-4-9-13 || 1-11/9-9/8-14/9-7/4 || hemififths || || 21 || 0-1-5-9-13 || 1-11/9-11/8-14/9-7/4 || pele || || 22 || 0-4-5-9-13 || 1-9/8-11/8-14/9-7/4 || pentacircle || || 23 || 0-4-8-9-13 || 1-9/8-14/11-14/9-7/4 || pentacircle || || 24 || 0-5-8-9-13 || 1-11/8-14/11-14/9-7/4 || nofives || || 25 || 0-8-9-11-13 || 1-14/11-14/9-7/6-7/4 || utonal || || 26 || 0-1-4-12-13 || 1-11/9-9/8-10/7-7/4 || jove || || 27 || 0-4-8-12-13 || 1-9/8-14/11-10/7-7/4 || pele || || 28 || 0-1-9-12-13 || 1-11/9-14/9-10/7-7/4 || jove || || 29 || 0-4-9-12-13 || 1-9/8-14/9-10/7-7/4 || hemififths || || 30 || 0-8-9-12-13 || 1-14/11-14/9-10/7-7/4 || jove || || 31 || 0-8-11-12-13 || 1-14/11-7/6-10/7-7/4 || jove || || 32 || 0-9-11-12-13 || 1-14/9-7/6-10/7-7/4 || jove || || 33 || 0-8-9-11-20 || 1-14/11-14/9-7/6-20/11 || swetismic || || 34 || 0-8-9-12-20 || 1-14/11-14/9-10/7-20/11 || jove || || 35 || 0-8-11-12-20 || 1-14/11-7/6-10/7-20/11 || jove || || 36 || 0-9-11-12-20 || 1-14/9-7/6-10/7-20/11 || swetismic || || 37 || 0-1-9-12-21 || 1-11/9-14/9-10/7-10/9 || swetismic || || 38 || 0-8-9-12-21 || 1-14/11-14/9-10/7-10/9 || jove || || 39 || 0-1-9-13-21 || 1-11/9-14/9-7/4-10/9 || werckismic || || 40 || 0-8-9-13-21 || 1-14/11-14/9-7/4-10/9 || werckismic || || 41 || 0-1-12-13-21 || 1-11/9-10/7-7/4-10/9 || jove || || 42 || 0-8-12-13-21 || 1-14/11-10/7-7/4-10/9 || werckismic || || 43 || 0-9-12-13-21 || 1-14/9-10/7-7/4-10/9 || jove || || 44 || 0-8-9-20-21 || 1-14/11-14/9-20/11-10/9 || jove || || 45 || 0-8-12-20-21 || 1-14/11-10/7-20/11-10/9 || werckismic || || 46 || 0-9-12-20-21 || 1-14/9-10/7-20/11-10/9 || swetismic || || 47 || 0-2-3-11-23 || 1-3/2-11/6-7/6-5/3 || otonal || || 48 || 0-3-11-12-23 || 1-11/6-7/6-10/7-5/3 || swetismic || || 49 || 0-11-12-20-23 || 1-7/6-10/7-20/11-5/3 || swetismic || || 50 || 0-12-20-21-23 || 1-10/7-20/11-10/9-5/3 || utonal || || 51 || 0-2-4-5-25 || 1-3/2-9/8-11/8-5/4 || otonal || || 52 || 0-2-4-13-25 || 1-3/2-9/8-7/4-5/4 || otonal || || 53 || 0-2-5-13-25 || 1-3/2-11/8-7/4-5/4 || otonal || || 54 || 0-4-5-13-25 || 1-9/8-11/8-7/4-5/4 || otonal || || 55 || 0-4-12-13-25 || 1-9/8-10/7-7/4-5/4 || werckismic || || 56 || 0-12-13-21-25 || 1-10/7-7/4-10/9-5/4 || werckismic || || 57 || 0-12-20-21-25 || 1-10/7-20/11-10/9-5/4 || utonal || || 58 || 0-12-20-23-25 || 1-10/7-20/11-5/3-5/4 || utonal || || 59 || 0-12-21-23-25 || 1-10/7-10/9-5/3-5/4 || utonal || || 60 || 0-20-21-23-25 || 1-20/11-10/9-5/3-5/4 || utonal || =Hexads= || Number || Chord || Transversal || Type || || 1 || 0-1-2-3-4-5 || 1-11/9-3/2-11/6-9/8-11/8 || rastmic || || 2 || 0-1-2-4-5-13 || 1-11/9-3/2-9/8-11/8-7/4 || jove || || 3 || 0-1-4-5-9-13 || 1-11/9-9/8-11/8-14/9-7/4 || hemififths || || 4 || 0-4-5-8-9-13 || 1-9/8-11/8-14/11-14/9-7/4 || nofives || || 5 || 0-1-4-9-12-13 || 1-11/9-9/8-14/9-10/7-7/4 || hemififths || || 6 || 0-4-8-9-12-13 || 1-9/8-14/11-14/9-10/7-7/4 || hemififths || || 7 || 0-8-9-11-12-13 || 1-14/11-14/9-7/6-10/7-7/4 || jove || || 8 || 0-8-9-11-12-20 || 1-14/11-14/9-7/6-10/7-20/11 || jove || || 9 || 0-1-9-12-13-21 || 1-11/9-14/9-10/7-7/4-10/9 || jove || || 10 || 0-8-9-12-13-21 || 1-14/11-14/9-10/7-7/4-10/9 || jove || || 11 || 0-8-9-12-20-21 || 1-14/11-14/9-10/7-20/11-10/9 || jove || || 12 || 0-2-4-5-13-25 || 1-3/2-9/8-11/8-7/4-5/4 || otonal || || 13 || 0-12-20-21-23-25 || 1-10/7-20/11-10/9-5/3-5/4 || utonal ||
Original HTML content:
<html><head><title>Chords of hemififths</title></head><body>Below are listed the <a class="wiki_link" href="/Dyadic%20chord">dyadic chords</a> of 11-limit <a class="wiki_link" href="/Breedsmic%20temperaments#Hemififths">hemififths temperament</a>. The essentially just chords are typed as otonal, utonal, or ambitonal. Those requiring tempering only by 540/539 are swetismic, by 441/440 werckismic, by 896/891 pentacircle, by 243/242 rastmic, and by 1344/1331 hemimin. Those requiring tempering by any two of 540/539, 441/440 or 243/242 are labeled jove, and those requiring both 441/440 and 896/891 are labeled pele. The label "nofives" refers to the unnamed rank-three temperament tempering out 243/242, 896/891 and 1344/1331, and if any two of these are needed the chord is so labled. "Nofives" refers to the fact that it is in essence a no-fives version of hemififths; if the full hemififths is required because of the tempering out of three independent hemififths commas, the chord is labeled "hemififths".<br /> <br /> A striking feature of these hemififths chords is that essentially just chords tend to be of higher complexity than essentially tempered chords. Hemififths has MOS of size 7, 10, 17 and 24, and even seven notes are well-supplied with chords, mostly but by no means entirely essentially tempered chords. Extending consideration to the 13-limit adds even more such chords.<br /> <br /> <!-- ws:start:WikiTextHeadingRule:0:<h1> --><h1 id="toc0"><a name="Triads"></a><!-- ws:end:WikiTextHeadingRule:0 -->Triads</h1> <table class="wiki_table"> <tr> <td>Number<br /> </td> <td>Chord<br /> </td> <td>Transversal<br /> </td> <td>Type<br /> </td> </tr> <tr> <td>1<br /> </td> <td>0-1-2<br /> </td> <td>1-11/9-3/2<br /> </td> <td>rastmic<br /> </td> </tr> <tr> <td>2<br /> </td> <td>0-1-3<br /> </td> <td>1-11/9-11/6<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>3<br /> </td> <td>0-2-3<br /> </td> <td>1-3/2-11/6<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>4<br /> </td> <td>0-1-4<br /> </td> <td>1-11/9-9/8<br /> </td> <td>rastmic<br /> </td> </tr> <tr> <td>5<br /> </td> <td>0-2-4<br /> </td> <td>1-3/2-9/8<br /> </td> <td>ambitonal<br /> </td> </tr> <tr> <td>6<br /> </td> <td>0-3-4<br /> </td> <td>1-11/6-9/8<br /> </td> <td>rastmic<br /> </td> </tr> <tr> <td>7<br /> </td> <td>0-1-5<br /> </td> <td>1-11/9-11/8<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>8<br /> </td> <td>0-2-5<br /> </td> <td>1-3/2-11/8<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>9<br /> </td> <td>0-3-5<br /> </td> <td>1-11/6-11/8<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>10<br /> </td> <td>0-4-5<br /> </td> <td>1-9/8-11/8<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>11<br /> </td> <td>0-3-8<br /> </td> <td>1-11/6-14/11<br /> </td> <td>hemimin<br /> </td> </tr> <tr> <td>12<br /> </td> <td>0-4-8<br /> </td> <td>1-9/8-14/11<br /> </td> <td>pentacircle<br /> </td> </tr> <tr> <td>13<br /> </td> <td>0-5-8<br /> </td> <td>1-11/8-14/11<br /> </td> <td>hemimin<br /> </td> </tr> <tr> <td>14<br /> </td> <td>0-1-9<br /> </td> <td>1-11/9-14/9<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>15<br /> </td> <td>0-4-9<br /> </td> <td>1-9/8-14/9<br /> </td> <td>pentacircle<br /> </td> </tr> <tr> <td>16<br /> </td> <td>0-5-9<br /> </td> <td>1-11/8-14/9<br /> </td> <td>pentacircle<br /> </td> </tr> <tr> <td>17<br /> </td> <td>0-8-9<br /> </td> <td>1-14/11-14/9<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>18<br /> </td> <td>0-2-11<br /> </td> <td>1-3/2-7/6<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>19<br /> </td> <td>0-3-11<br /> </td> <td>1-11/6-7/6<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>20<br /> </td> <td>0-8-11<br /> </td> <td>1-14/11-7/6<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>21<br /> </td> <td>0-9-11<br /> </td> <td>1-14/9-7/6<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>22<br /> </td> <td>0-1-12<br /> </td> <td>1-11/9-10/7<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>23<br /> </td> <td>0-3-12<br /> </td> <td>1-11/6-10/7<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>24<br /> </td> <td>0-4-12<br /> </td> <td>1-9/8-10/7<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>25<br /> </td> <td>0-8-12<br /> </td> <td>1-14/11-10/7<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>26<br /> </td> <td>0-9-12<br /> </td> <td>1-14/9-10/7<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>27<br /> </td> <td>0-11-12<br /> </td> <td>1-7/6-10/7<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>28<br /> </td> <td>0-1-13<br /> </td> <td>1-11/9-7/4<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>29<br /> </td> <td>0-2-13<br /> </td> <td>1-3/2-7/4<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>30<br /> </td> <td>0-4-13<br /> </td> <td>1-9/8-7/4<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>31<br /> </td> <td>0-5-13<br /> </td> <td>1-11/8-7/4<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>32<br /> </td> <td>0-8-13<br /> </td> <td>1-14/11-7/4<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>33<br /> </td> <td>0-9-13<br /> </td> <td>1-14/9-7/4<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>34<br /> </td> <td>0-11-13<br /> </td> <td>1-7/6-7/4<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>35<br /> </td> <td>0-12-13<br /> </td> <td>1-10/7-7/4<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>36<br /> </td> <td>0-8-20<br /> </td> <td>1-14/11-20/11<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>37<br /> </td> <td>0-9-20<br /> </td> <td>1-14/9-20/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>38<br /> </td> <td>0-11-20<br /> </td> <td>1-7/6-20/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>39<br /> </td> <td>0-12-20<br /> </td> <td>1-10/7-20/11<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>40<br /> </td> <td>0-1-21<br /> </td> <td>1-11/9-10/9<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>41<br /> </td> <td>0-8-21<br /> </td> <td>1-14/11-10/9<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>42<br /> </td> <td>0-9-21<br /> </td> <td>1-14/9-10/9<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>43<br /> </td> <td>0-12-21<br /> </td> <td>1-10/7-10/9<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>44<br /> </td> <td>0-13-21<br /> </td> <td>1-7/4-10/9<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>45<br /> </td> <td>0-20-21<br /> </td> <td>1-20/11-10/9<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>46<br /> </td> <td>0-2-23<br /> </td> <td>1-3/2-5/3<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>47<br /> </td> <td>0-3-23<br /> </td> <td>1-11/6-5/3<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>48<br /> </td> <td>0-11-23<br /> </td> <td>1-7/6-5/3<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>49<br /> </td> <td>0-12-23<br /> </td> <td>1-10/7-5/3<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>50<br /> </td> <td>0-20-23<br /> </td> <td>1-20/11-5/3<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>51<br /> </td> <td>0-21-23<br /> </td> <td>1-10/9-5/3<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>52<br /> </td> <td>0-2-25<br /> </td> <td>1-3/2-5/4<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>53<br /> </td> <td>0-4-25<br /> </td> <td>1-9/8-5/4<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>54<br /> </td> <td>0-5-25<br /> </td> <td>1-11/8-5/4<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>55<br /> </td> <td>0-12-25<br /> </td> <td>1-10/7-5/4<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>56<br /> </td> <td>0-13-25<br /> </td> <td>1-7/4-5/4<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>57<br /> </td> <td>0-20-25<br /> </td> <td>1-20/11-5/4<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>58<br /> </td> <td>0-21-25<br /> </td> <td>1-10/9-5/4<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>59<br /> </td> <td>0-23-25<br /> </td> <td>1-5/3-5/4<br /> </td> <td>utonal<br /> </td> </tr> </table> <br /> <!-- ws:start:WikiTextHeadingRule:2:<h1> --><h1 id="toc1"><a name="Tetrads"></a><!-- ws:end:WikiTextHeadingRule:2 -->Tetrads</h1> <table class="wiki_table"> <tr> <td>Number<br /> </td> <td>Chord<br /> </td> <td>Transversal<br /> </td> <td>Type<br /> </td> </tr> <tr> <td>1<br /> </td> <td>0-1-2-3<br /> </td> <td>1-11/9-3/2-11/6<br /> </td> <td>rastmic<br /> </td> </tr> <tr> <td>2<br /> </td> <td>0-1-2-4<br /> </td> <td>1-11/9-3/2-9/8<br /> </td> <td>rastmic<br /> </td> </tr> <tr> <td>3<br /> </td> <td>0-1-3-4<br /> </td> <td>1-11/9-11/6-9/8<br /> </td> <td>rastmic<br /> </td> </tr> <tr> <td>4<br /> </td> <td>0-2-3-4<br /> </td> <td>1-3/2-11/6-9/8<br /> </td> <td>rastmic<br /> </td> </tr> <tr> <td>5<br /> </td> <td>0-1-2-5<br /> </td> <td>1-11/9-3/2-11/8<br /> </td> <td>rastmic<br /> </td> </tr> <tr> <td>6<br /> </td> <td>0-1-3-5<br /> </td> <td>1-11/9-11/6-11/8<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>7<br /> </td> <td>0-2-3-5<br /> </td> <td>1-3/2-11/6-11/8<br /> </td> <td>ambitonal<br /> </td> </tr> <tr> <td>8<br /> </td> <td>0-1-4-5<br /> </td> <td>1-11/9-9/8-11/8<br /> </td> <td>rastmic<br /> </td> </tr> <tr> <td>9<br /> </td> <td>0-2-4-5<br /> </td> <td>1-3/2-9/8-11/8<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>10<br /> </td> <td>0-3-4-5<br /> </td> <td>1-11/6-9/8-11/8<br /> </td> <td>rastmic<br /> </td> </tr> <tr> <td>11<br /> </td> <td>0-3-4-8<br /> </td> <td>1-11/6-9/8-14/11<br /> </td> <td>nofives<br /> </td> </tr> <tr> <td>12<br /> </td> <td>0-3-5-8<br /> </td> <td>1-11/6-11/8-14/11<br /> </td> <td>hemimin<br /> </td> </tr> <tr> <td>13<br /> </td> <td>0-4-5-8<br /> </td> <td>1-9/8-11/8-14/11<br /> </td> <td>nofives<br /> </td> </tr> <tr> <td>14<br /> </td> <td>0-1-4-9<br /> </td> <td>1-11/9-9/8-14/9<br /> </td> <td>nofives<br /> </td> </tr> <tr> <td>15<br /> </td> <td>0-1-5-9<br /> </td> <td>1-11/9-11/8-14/9<br /> </td> <td>pentacircle<br /> </td> </tr> <tr> <td>16<br /> </td> <td>0-4-5-9<br /> </td> <td>1-9/8-11/8-14/9<br /> </td> <td>pentacircle<br /> </td> </tr> <tr> <td>17<br /> </td> <td>0-4-8-9<br /> </td> <td>1-9/8-14/11-14/9<br /> </td> <td>pentacircle<br /> </td> </tr> <tr> <td>18<br /> </td> <td>0-5-8-9<br /> </td> <td>1-11/8-14/11-14/9<br /> </td> <td>nofives<br /> </td> </tr> <tr> <td>19<br /> </td> <td>0-2-3-11<br /> </td> <td>1-3/2-11/6-7/6<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>20<br /> </td> <td>0-3-8-11<br /> </td> <td>1-11/6-14/11-7/6<br /> </td> <td>hemimin<br /> </td> </tr> <tr> <td>21<br /> </td> <td>0-8-9-11<br /> </td> <td>1-14/11-14/9-7/6<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>22<br /> </td> <td>0-1-3-12<br /> </td> <td>1-11/9-11/6-10/7<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>23<br /> </td> <td>0-1-4-12<br /> </td> <td>1-11/9-9/8-10/7<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>24<br /> </td> <td>0-3-4-12<br /> </td> <td>1-11/6-9/8-10/7<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>25<br /> </td> <td>0-3-8-12<br /> </td> <td>1-11/6-14/11-10/7<br /> </td> <td>hemififths<br /> </td> </tr> <tr> <td>26<br /> </td> <td>0-4-8-12<br /> </td> <td>1-9/8-14/11-10/7<br /> </td> <td>pele<br /> </td> </tr> <tr> <td>27<br /> </td> <td>0-1-9-12<br /> </td> <td>1-11/9-14/9-10/7<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>28<br /> </td> <td>0-4-9-12<br /> </td> <td>1-9/8-14/9-10/7<br /> </td> <td>hemififths<br /> </td> </tr> <tr> <td>29<br /> </td> <td>0-8-9-12<br /> </td> <td>1-14/11-14/9-10/7<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>30<br /> </td> <td>0-3-11-12<br /> </td> <td>1-11/6-7/6-10/7<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>31<br /> </td> <td>0-8-11-12<br /> </td> <td>1-14/11-7/6-10/7<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>32<br /> </td> <td>0-9-11-12<br /> </td> <td>1-14/9-7/6-10/7<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>33<br /> </td> <td>0-1-2-13<br /> </td> <td>1-11/9-3/2-7/4<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>34<br /> </td> <td>0-1-4-13<br /> </td> <td>1-11/9-9/8-7/4<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>35<br /> </td> <td>0-2-4-13<br /> </td> <td>1-3/2-9/8-7/4<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>36<br /> </td> <td>0-1-5-13<br /> </td> <td>1-11/9-11/8-7/4<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>37<br /> </td> <td>0-2-5-13<br /> </td> <td>1-3/2-11/8-7/4<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>38<br /> </td> <td>0-4-5-13<br /> </td> <td>1-9/8-11/8-7/4<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>39<br /> </td> <td>0-4-8-13<br /> </td> <td>1-9/8-14/11-7/4<br /> </td> <td>pentacircle<br /> </td> </tr> <tr> <td>40<br /> </td> <td>0-5-8-13<br /> </td> <td>1-11/8-14/11-7/4<br /> </td> <td>hemimin<br /> </td> </tr> <tr> <td>41<br /> </td> <td>0-1-9-13<br /> </td> <td>1-11/9-14/9-7/4<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>42<br /> </td> <td>0-4-9-13<br /> </td> <td>1-9/8-14/9-7/4<br /> </td> <td>pentacircle<br /> </td> </tr> <tr> <td>43<br /> </td> <td>0-5-9-13<br /> </td> <td>1-11/8-14/9-7/4<br /> </td> <td>pentacircle<br /> </td> </tr> <tr> <td>44<br /> </td> <td>0-8-9-13<br /> </td> <td>1-14/11-14/9-7/4<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>45<br /> </td> <td>0-2-11-13<br /> </td> <td>1-3/2-7/6-7/4<br /> </td> <td>ambitonal<br /> </td> </tr> <tr> <td>46<br /> </td> <td>0-8-11-13<br /> </td> <td>1-14/11-7/6-7/4<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>47<br /> </td> <td>0-9-11-13<br /> </td> <td>1-14/9-7/6-7/4<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>48<br /> </td> <td>0-1-12-13<br /> </td> <td>1-11/9-10/7-7/4<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>49<br /> </td> <td>0-4-12-13<br /> </td> <td>1-9/8-10/7-7/4<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>50<br /> </td> <td>0-8-12-13<br /> </td> <td>1-14/11-10/7-7/4<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>51<br /> </td> <td>0-9-12-13<br /> </td> <td>1-14/9-10/7-7/4<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>52<br /> </td> <td>0-11-12-13<br /> </td> <td>1-7/6-10/7-7/4<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>53<br /> </td> <td>0-8-9-20<br /> </td> <td>1-14/11-14/9-20/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>54<br /> </td> <td>0-8-11-20<br /> </td> <td>1-14/11-7/6-20/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>55<br /> </td> <td>0-9-11-20<br /> </td> <td>1-14/9-7/6-20/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>56<br /> </td> <td>0-8-12-20<br /> </td> <td>1-14/11-10/7-20/11<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>57<br /> </td> <td>0-9-12-20<br /> </td> <td>1-14/9-10/7-20/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>58<br /> </td> <td>0-11-12-20<br /> </td> <td>1-7/6-10/7-20/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>59<br /> </td> <td>0-1-9-21<br /> </td> <td>1-11/9-14/9-10/9<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>60<br /> </td> <td>0-8-9-21<br /> </td> <td>1-14/11-14/9-10/9<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>61<br /> </td> <td>0-1-12-21<br /> </td> <td>1-11/9-10/7-10/9<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>62<br /> </td> <td>0-8-12-21<br /> </td> <td>1-14/11-10/7-10/9<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>63<br /> </td> <td>0-9-12-21<br /> </td> <td>1-14/9-10/7-10/9<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>64<br /> </td> <td>0-1-13-21<br /> </td> <td>1-11/9-7/4-10/9<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>65<br /> </td> <td>0-8-13-21<br /> </td> <td>1-14/11-7/4-10/9<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>66<br /> </td> <td>0-9-13-21<br /> </td> <td>1-14/9-7/4-10/9<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>67<br /> </td> <td>0-12-13-21<br /> </td> <td>1-10/7-7/4-10/9<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>68<br /> </td> <td>0-8-20-21<br /> </td> <td>1-14/11-20/11-10/9<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>69<br /> </td> <td>0-9-20-21<br /> </td> <td>1-14/9-20/11-10/9<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>70<br /> </td> <td>0-12-20-21<br /> </td> <td>1-10/7-20/11-10/9<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>71<br /> </td> <td>0-2-3-23<br /> </td> <td>1-3/2-11/6-5/3<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>72<br /> </td> <td>0-2-11-23<br /> </td> <td>1-3/2-7/6-5/3<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>73<br /> </td> <td>0-3-11-23<br /> </td> <td>1-11/6-7/6-5/3<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>74<br /> </td> <td>0-3-12-23<br /> </td> <td>1-11/6-10/7-5/3<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>75<br /> </td> <td>0-11-12-23<br /> </td> <td>1-7/6-10/7-5/3<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>76<br /> </td> <td>0-11-20-23<br /> </td> <td>1-7/6-20/11-5/3<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>77<br /> </td> <td>0-12-20-23<br /> </td> <td>1-10/7-20/11-5/3<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>78<br /> </td> <td>0-12-21-23<br /> </td> <td>1-10/7-10/9-5/3<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>79<br /> </td> <td>0-20-21-23<br /> </td> <td>1-20/11-10/9-5/3<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>80<br /> </td> <td>0-2-4-25<br /> </td> <td>1-3/2-9/8-5/4<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>81<br /> </td> <td>0-2-5-25<br /> </td> <td>1-3/2-11/8-5/4<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>82<br /> </td> <td>0-4-5-25<br /> </td> <td>1-9/8-11/8-5/4<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>83<br /> </td> <td>0-4-12-25<br /> </td> <td>1-9/8-10/7-5/4<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>84<br /> </td> <td>0-2-13-25<br /> </td> <td>1-3/2-7/4-5/4<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>85<br /> </td> <td>0-4-13-25<br /> </td> <td>1-9/8-7/4-5/4<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>86<br /> </td> <td>0-5-13-25<br /> </td> <td>1-11/8-7/4-5/4<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>87<br /> </td> <td>0-12-13-25<br /> </td> <td>1-10/7-7/4-5/4<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>88<br /> </td> <td>0-12-20-25<br /> </td> <td>1-10/7-20/11-5/4<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>89<br /> </td> <td>0-12-21-25<br /> </td> <td>1-10/7-10/9-5/4<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>90<br /> </td> <td>0-13-21-25<br /> </td> <td>1-7/4-10/9-5/4<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>91<br /> </td> <td>0-20-21-25<br /> </td> <td>1-20/11-10/9-5/4<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>92<br /> </td> <td>0-2-23-25<br /> </td> <td>1-3/2-5/3-5/4<br /> </td> <td>ambitonal<br /> </td> </tr> <tr> <td>93<br /> </td> <td>0-12-23-25<br /> </td> <td>1-10/7-5/3-5/4<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>94<br /> </td> <td>0-20-23-25<br /> </td> <td>1-20/11-5/3-5/4<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>95<br /> </td> <td>0-21-23-25<br /> </td> <td>1-10/9-5/3-5/4<br /> </td> <td>utonal<br /> </td> </tr> </table> <br /> <!-- ws:start:WikiTextHeadingRule:4:<h1> --><h1 id="toc2"><a name="Pentads"></a><!-- ws:end:WikiTextHeadingRule:4 -->Pentads</h1> <table class="wiki_table"> <tr> <td>Number<br /> </td> <td>Chord<br /> </td> <td>Transversal<br /> </td> <td>Type<br /> </td> </tr> <tr> <td>1<br /> </td> <td>0-1-2-3-4<br /> </td> <td>1-11/9-3/2-11/6-9/8<br /> </td> <td>rastmic<br /> </td> </tr> <tr> <td>2<br /> </td> <td>0-1-2-3-5<br /> </td> <td>1-11/9-3/2-11/6-11/8<br /> </td> <td>rastmic<br /> </td> </tr> <tr> <td>3<br /> </td> <td>0-1-2-4-5<br /> </td> <td>1-11/9-3/2-9/8-11/8<br /> </td> <td>rastmic<br /> </td> </tr> <tr> <td>4<br /> </td> <td>0-1-3-4-5<br /> </td> <td>1-11/9-11/6-9/8-11/8<br /> </td> <td>rastmic<br /> </td> </tr> <tr> <td>5<br /> </td> <td>0-2-3-4-5<br /> </td> <td>1-3/2-11/6-9/8-11/8<br /> </td> <td>rastmic<br /> </td> </tr> <tr> <td>6<br /> </td> <td>0-3-4-5-8<br /> </td> <td>1-11/6-9/8-11/8-14/11<br /> </td> <td>nofives<br /> </td> </tr> <tr> <td>7<br /> </td> <td>0-1-4-5-9<br /> </td> <td>1-11/9-9/8-11/8-14/9<br /> </td> <td>nofives<br /> </td> </tr> <tr> <td>8<br /> </td> <td>0-4-5-8-9<br /> </td> <td>1-9/8-11/8-14/11-14/9<br /> </td> <td>nofives<br /> </td> </tr> <tr> <td>9<br /> </td> <td>0-1-3-4-12<br /> </td> <td>1-11/9-11/6-9/8-10/7<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>10<br /> </td> <td>0-3-4-8-12<br /> </td> <td>1-11/6-9/8-14/11-10/7<br /> </td> <td>hemififths<br /> </td> </tr> <tr> <td>11<br /> </td> <td>0-1-4-9-12<br /> </td> <td>1-11/9-9/8-14/9-10/7<br /> </td> <td>hemififths<br /> </td> </tr> <tr> <td>12<br /> </td> <td>0-4-8-9-12<br /> </td> <td>1-9/8-14/11-14/9-10/7<br /> </td> <td>hemififths<br /> </td> </tr> <tr> <td>13<br /> </td> <td>0-3-8-11-12<br /> </td> <td>1-11/6-14/11-7/6-10/7<br /> </td> <td>hemififths<br /> </td> </tr> <tr> <td>14<br /> </td> <td>0-8-9-11-12<br /> </td> <td>1-14/11-14/9-7/6-10/7<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>15<br /> </td> <td>0-1-2-4-13<br /> </td> <td>1-11/9-3/2-9/8-7/4<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>16<br /> </td> <td>0-1-2-5-13<br /> </td> <td>1-11/9-3/2-11/8-7/4<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>17<br /> </td> <td>0-1-4-5-13<br /> </td> <td>1-11/9-9/8-11/8-7/4<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>18<br /> </td> <td>0-2-4-5-13<br /> </td> <td>1-3/2-9/8-11/8-7/4<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>19<br /> </td> <td>0-4-5-8-13<br /> </td> <td>1-9/8-11/8-14/11-7/4<br /> </td> <td>nofives<br /> </td> </tr> <tr> <td>20<br /> </td> <td>0-1-4-9-13<br /> </td> <td>1-11/9-9/8-14/9-7/4<br /> </td> <td>hemififths<br /> </td> </tr> <tr> <td>21<br /> </td> <td>0-1-5-9-13<br /> </td> <td>1-11/9-11/8-14/9-7/4<br /> </td> <td>pele<br /> </td> </tr> <tr> <td>22<br /> </td> <td>0-4-5-9-13<br /> </td> <td>1-9/8-11/8-14/9-7/4<br /> </td> <td>pentacircle<br /> </td> </tr> <tr> <td>23<br /> </td> <td>0-4-8-9-13<br /> </td> <td>1-9/8-14/11-14/9-7/4<br /> </td> <td>pentacircle<br /> </td> </tr> <tr> <td>24<br /> </td> <td>0-5-8-9-13<br /> </td> <td>1-11/8-14/11-14/9-7/4<br /> </td> <td>nofives<br /> </td> </tr> <tr> <td>25<br /> </td> <td>0-8-9-11-13<br /> </td> <td>1-14/11-14/9-7/6-7/4<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>26<br /> </td> <td>0-1-4-12-13<br /> </td> <td>1-11/9-9/8-10/7-7/4<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>27<br /> </td> <td>0-4-8-12-13<br /> </td> <td>1-9/8-14/11-10/7-7/4<br /> </td> <td>pele<br /> </td> </tr> <tr> <td>28<br /> </td> <td>0-1-9-12-13<br /> </td> <td>1-11/9-14/9-10/7-7/4<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>29<br /> </td> <td>0-4-9-12-13<br /> </td> <td>1-9/8-14/9-10/7-7/4<br /> </td> <td>hemififths<br /> </td> </tr> <tr> <td>30<br /> </td> <td>0-8-9-12-13<br /> </td> <td>1-14/11-14/9-10/7-7/4<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>31<br /> </td> <td>0-8-11-12-13<br /> </td> <td>1-14/11-7/6-10/7-7/4<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>32<br /> </td> <td>0-9-11-12-13<br /> </td> <td>1-14/9-7/6-10/7-7/4<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>33<br /> </td> <td>0-8-9-11-20<br /> </td> <td>1-14/11-14/9-7/6-20/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>34<br /> </td> <td>0-8-9-12-20<br /> </td> <td>1-14/11-14/9-10/7-20/11<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>35<br /> </td> <td>0-8-11-12-20<br /> </td> <td>1-14/11-7/6-10/7-20/11<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>36<br /> </td> <td>0-9-11-12-20<br /> </td> <td>1-14/9-7/6-10/7-20/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>37<br /> </td> <td>0-1-9-12-21<br /> </td> <td>1-11/9-14/9-10/7-10/9<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>38<br /> </td> <td>0-8-9-12-21<br /> </td> <td>1-14/11-14/9-10/7-10/9<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>39<br /> </td> <td>0-1-9-13-21<br /> </td> <td>1-11/9-14/9-7/4-10/9<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>40<br /> </td> <td>0-8-9-13-21<br /> </td> <td>1-14/11-14/9-7/4-10/9<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>41<br /> </td> <td>0-1-12-13-21<br /> </td> <td>1-11/9-10/7-7/4-10/9<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>42<br /> </td> <td>0-8-12-13-21<br /> </td> <td>1-14/11-10/7-7/4-10/9<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>43<br /> </td> <td>0-9-12-13-21<br /> </td> <td>1-14/9-10/7-7/4-10/9<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>44<br /> </td> <td>0-8-9-20-21<br /> </td> <td>1-14/11-14/9-20/11-10/9<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>45<br /> </td> <td>0-8-12-20-21<br /> </td> <td>1-14/11-10/7-20/11-10/9<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>46<br /> </td> <td>0-9-12-20-21<br /> </td> <td>1-14/9-10/7-20/11-10/9<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>47<br /> </td> <td>0-2-3-11-23<br /> </td> <td>1-3/2-11/6-7/6-5/3<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>48<br /> </td> <td>0-3-11-12-23<br /> </td> <td>1-11/6-7/6-10/7-5/3<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>49<br /> </td> <td>0-11-12-20-23<br /> </td> <td>1-7/6-10/7-20/11-5/3<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>50<br /> </td> <td>0-12-20-21-23<br /> </td> <td>1-10/7-20/11-10/9-5/3<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>51<br /> </td> <td>0-2-4-5-25<br /> </td> <td>1-3/2-9/8-11/8-5/4<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>52<br /> </td> <td>0-2-4-13-25<br /> </td> <td>1-3/2-9/8-7/4-5/4<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>53<br /> </td> <td>0-2-5-13-25<br /> </td> <td>1-3/2-11/8-7/4-5/4<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>54<br /> </td> <td>0-4-5-13-25<br /> </td> <td>1-9/8-11/8-7/4-5/4<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>55<br /> </td> <td>0-4-12-13-25<br /> </td> <td>1-9/8-10/7-7/4-5/4<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>56<br /> </td> <td>0-12-13-21-25<br /> </td> <td>1-10/7-7/4-10/9-5/4<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>57<br /> </td> <td>0-12-20-21-25<br /> </td> <td>1-10/7-20/11-10/9-5/4<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>58<br /> </td> <td>0-12-20-23-25<br /> </td> <td>1-10/7-20/11-5/3-5/4<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>59<br /> </td> <td>0-12-21-23-25<br /> </td> <td>1-10/7-10/9-5/3-5/4<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>60<br /> </td> <td>0-20-21-23-25<br /> </td> <td>1-20/11-10/9-5/3-5/4<br /> </td> <td>utonal<br /> </td> </tr> </table> <br /> <!-- ws:start:WikiTextHeadingRule:6:<h1> --><h1 id="toc3"><a name="Hexads"></a><!-- ws:end:WikiTextHeadingRule:6 -->Hexads</h1> <table class="wiki_table"> <tr> <td>Number<br /> </td> <td>Chord<br /> </td> <td>Transversal<br /> </td> <td>Type<br /> </td> </tr> <tr> <td>1<br /> </td> <td>0-1-2-3-4-5<br /> </td> <td>1-11/9-3/2-11/6-9/8-11/8<br /> </td> <td>rastmic<br /> </td> </tr> <tr> <td>2<br /> </td> <td>0-1-2-4-5-13<br /> </td> <td>1-11/9-3/2-9/8-11/8-7/4<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>3<br /> </td> <td>0-1-4-5-9-13<br /> </td> <td>1-11/9-9/8-11/8-14/9-7/4<br /> </td> <td>hemififths<br /> </td> </tr> <tr> <td>4<br /> </td> <td>0-4-5-8-9-13<br /> </td> <td>1-9/8-11/8-14/11-14/9-7/4<br /> </td> <td>nofives<br /> </td> </tr> <tr> <td>5<br /> </td> <td>0-1-4-9-12-13<br /> </td> <td>1-11/9-9/8-14/9-10/7-7/4<br /> </td> <td>hemififths<br /> </td> </tr> <tr> <td>6<br /> </td> <td>0-4-8-9-12-13<br /> </td> <td>1-9/8-14/11-14/9-10/7-7/4<br /> </td> <td>hemififths<br /> </td> </tr> <tr> <td>7<br /> </td> <td>0-8-9-11-12-13<br /> </td> <td>1-14/11-14/9-7/6-10/7-7/4<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>8<br /> </td> <td>0-8-9-11-12-20<br /> </td> <td>1-14/11-14/9-7/6-10/7-20/11<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>9<br /> </td> <td>0-1-9-12-13-21<br /> </td> <td>1-11/9-14/9-10/7-7/4-10/9<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>10<br /> </td> <td>0-8-9-12-13-21<br /> </td> <td>1-14/11-14/9-10/7-7/4-10/9<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>11<br /> </td> <td>0-8-9-12-20-21<br /> </td> <td>1-14/11-14/9-10/7-20/11-10/9<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>12<br /> </td> <td>0-2-4-5-13-25<br /> </td> <td>1-3/2-9/8-11/8-7/4-5/4<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>13<br /> </td> <td>0-12-20-21-23-25<br /> </td> <td>1-10/7-20/11-10/9-5/3-5/4<br /> </td> <td>utonal<br /> </td> </tr> </table> </body></html>