Dicot family
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author genewardsmith and made on 2010-06-06 17:33:08 UTC.
- The original revision id was 147269165.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
The 5-limit parent comma for the dicot family is 25/24, the chromatic semitone. Its monzo is |-3 -1 2>, and flipping that yields <<2 1 -3|| for the wedgie. This tells us the generator is a third (major and minor mean the same thing), and that two thirds gives a fifth. In fact, (5/4)^2 = 3/2 * 25/24. Possible tunings for dicot are [[7edo]], [[24edo]] using the val <24 38 55| and [[31edo]] using the val <31 49 71|. In a sense, what dicot is all about is using neutral thirds and pretending that's 5-limit, and like any temperament which seems to involve pretending dicot is at the edge of what can sensibly be called a temperament at all. ==Seven limit children== The second comma of the [[Normal lists|normal comma list]] defines which 7-limit family member we are looking at. Septimal dicot, with wedgie <<2 1 6 -3 4 11|| adds 28/27, retaining the same period and generator, decimal with wedgie <<4 2 2 -6 -8 -1|| adds 49/48, and sidi with wedgie <<4 2 9 -3 6 15|| adds 245/243. Here decimal divides the period to 1/2 octave, and sidi uses 9/7 as a generator, with two of them making up the combined 5/3 and 8/5 neutral sixth.
Original HTML content:
<html><head><title>Dicot family</title></head><body>The 5-limit parent comma for the dicot family is 25/24, the chromatic semitone. Its monzo is |-3 -1 2>, and flipping that yields <<2 1 -3|| for the wedgie. This tells us the generator is a third (major and minor mean the same thing), and that two thirds gives a fifth. In fact, (5/4)^2 = 3/2 * 25/24. Possible tunings for dicot are <a class="wiki_link" href="/7edo">7edo</a>, <a class="wiki_link" href="/24edo">24edo</a> using the val <24 38 55| and <a class="wiki_link" href="/31edo">31edo</a> using the val <31 49 71|. In a sense, what dicot is all about is using neutral thirds and pretending that's 5-limit, and like any temperament which seems to involve pretending dicot is at the edge of what can sensibly be called a temperament at all.<br /> <br /> <!-- ws:start:WikiTextHeadingRule:0:<h2> --><h2 id="toc0"><a name="x-Seven limit children"></a><!-- ws:end:WikiTextHeadingRule:0 -->Seven limit children</h2> The second comma of the <a class="wiki_link" href="/Normal%20lists">normal comma list</a> defines which 7-limit family member we are looking at. Septimal dicot, with wedgie <<2 1 6 -3 4 11|| adds 28/27, retaining the same period and generator, decimal with wedgie <<4 2 2 -6 -8 -1|| adds 49/48, and sidi with wedgie <<4 2 9 -3 6 15|| adds 245/243. Here decimal divides the period to 1/2 octave, and sidi uses 9/7 as a generator, with two of them making up the combined 5/3 and 8/5 neutral sixth.</body></html>