2711edo

From Xenharmonic Wiki
Jump to navigation Jump to search
This page presents a novelty topic.

It may contain ideas which are less likely to find practical applications in music, or numbers or structures that are arbitrary or exceedingly small, large, or complex.

Novelty topics are often developed by a single person or a small group. As such, this page may also contain idiosyncratic terms, notation, or conceptual frameworks.

This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 2710edo 2711edo 2712edo →
Prime factorization 2711 (prime)
Step size 0.442641 ¢ 
Fifth 1586\2711 (702.029 ¢)
Semitones (A1:m2) 258:203 (114.2 ¢ : 89.86 ¢)
Consistency limit 15
Distinct consistency limit 15

Template:EDO intro

Theory

2711et tempers out 78125000/78121827 in the 7-limit; 35156250/35153041, 14348907/14348180, 21437500/21434787, 151263/151250, 2359296/2358125, 5767168/5764801 and 199297406/199290375 in the 11-limit.

Prime harmonics

Approximation of prime harmonics in 2711edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.000 +0.074 +0.112 +0.115 +0.213 +0.048 -0.049 -0.058 -0.167 +0.006 +0.077
Relative (%) +0.0 +16.7 +25.3 +26.1 +48.1 +10.8 -11.2 -13.1 -37.6 +1.4 +17.4
Steps
(reduced)
2711
(0)
4297
(1586)
6295
(873)
7611
(2189)
9379
(1246)
10032
(1899)
11081
(237)
11516
(672)
12263
(1419)
13170
(2326)
13431
(2587)

Subsets and supersets

2711edo is the 395th prime edo.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [4297 -2711 2711 4297] -0.0233 0.0233 5.26
2.3.5 [77 -31 -12, [18 -89 53 2711 4297 6295] -0.0316 0.0223 5.04
2.3.5.7 [3 -13 10 -2, [37 -9 -11 1, [0 -11 -7 12 2711 4297 6295 7611] -0.0340 0.0198 4.47
2.3.5.7.11 151263/151250, 14348907/14348180, 2359296/2358125, 21437500/21434787 2711 4297 6295 7611 9379] -0.0395 0.0209 4.72
2.3.5.7.11.13 4096/4095, 43940/43923, 67392/67375, 151263/151250, 4429568/4428675 2711 4297 6295 7611 9379 10032] -0.0351 0.0215 4.86

Music