List of anomalous saturated suspensions

From Xenharmonic Wiki
Revision as of 17:52, 8 August 2016 by Wikispaces>clumma (**Imported revision 588934504 - Original comment: **)
Jump to navigation Jump to search

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author clumma and made on 2016-08-08 17:52:10 UTC.
The original revision id was 588934504.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

Below is a complete list of [[http://x31eq.com/ass.htm|Anomalous Saturated Suspensions]] through the 23-limit. Each chord listed is either ambitonal, or has a [[Otonality and utonality|o/utonal]] inverse which is also an ASS.

==Naming==

For each odd limit we can list ambitonal chords in lexicographic order by harmonic series representation, along with o/utonal chord pairs according to the harmonic series representation of the otonal chord in the pair. Each chord is then designated with a capital "A" whose subscript is a tuple, where the first value is the odd limit and the second value is the index in the list for that odd limit. This is followed by an "a," "o," or "u" depending on whether the chord is ambitonal, otonal, or utonal.

||~ Name ||~ Odd Limit ||~ Harmonic Series ||~ Scale ||~ Scale Name ||
|| A_{9,1a} || 9 || 3:5:9:15 || 1/1 6/5 3/2 9/5 ||  ||
||  || 9 || 3:7:9:21 || 1/1 7/6 3/2 7/4 ||  ||
||  || 11 || 3:9:11:33 || 1/1 11/8 3/2 11/6 ||  ||
||  || 13 || 3:9:13:39 || 1/1 13/12 3/2 13/8 ||  ||
||  || 15 || 3:7:9:15:21 || 1/1 7/6 5/4 3/2 7/4 || Hendrix ||
||  || 15 || 15:21:35:45:105 || 1/1 7/6 7/5 3/2 7/4 || Inverted Hendrix ||
||  || 15 || 3:9:11:15:33 || 1/1 5/4 11/8 3/2 11/6 || 11-Hendrix ||
||  || 15 || 15:33:45:55:165 || 1/1 11/10 11/8 3/2 11/6 || Inverted 11-Hendrix ||
||  || 15 || 3:9:13:15:39 || 1/1 13/12 5/4 3/2 13/8 || 13-Hendrix ||
||  || 15 || 15:39:45:65:195 || 1/1 13/12 13/10 3/2 13/8 || Inverted 13-Hendrix ||
||  || 17 || 3:9:15:17:51 || 1/1 17/16 5/4 17/12 3/2 || 17-Hendrix ||
||  || 17 || 15:45:51:85:255 || 1/1 17/16 17/12 3/2 17/10 || Inverted 17-Hendrix ||
||  || 19 || 3:9:15:19:57 || 1/1 19/16 5/4 3/2 19/12 || 19-Hendrix ||
||  || 19 || 15:45:57:95:285 || 1/1 19/16 3/2 19/12 19/10 || Inverted 19-Hendrix ||
||  || 21 || 5:15:21:35:45:105 || 1/1 21/20 9/8 21/16 3/2 7/4 ||  ||
||  || 21 || 3:5:9:15:21:45 || 1/1 15/14 9/8 9/7 3/2 12/7 ||  ||
||  || 21 || 7:15:21:35:63:105 || 1/1 15/14 9/8 5/4 3/2 15/8 ||  ||
||  || 21 || 3:7:9:15:21:63 || 1/1 21/20 9/8 6/5 3/2 9/5 ||  ||
||  || 21 || 3:9:11:15:21:33 || 1/1 5/4 11/8 3/2 7/4 11/6 ||  ||
||  || 21 || 105:165:231:315:385:1155 || 1/1 12/11 6/5 3/2 18/11 12/7 ||  ||
||  || 21 || 3:9:13:15:21:39 || 1/1 13/12 5/4 3/2 13/8 7/4 ||  ||
||  || 21 || 105:195:273:315:455:1365 || 1/1 6/5 18/13 3/2 12/7 24/13 ||  ||
||  || 21 || 3:9:15:17:21:51 || 1/1 17/16 5/4 17/12 3/2 7/4 ||  ||
||  || 21 || 105:255:315:357:595:1785 || 1/1 18/17 6/5 24/17 3/2 12/7 ||  ||
||  || 21 || 3:9:15:19:21:57 || 1/1 19/16 5/4 3/2 19/12 7/4 ||  ||
||  || 21 || 105:285:315:399:665:1995 || 1/1 6/5 24/19 3/2 12/7 36/19 ||  ||
||  || 23 || 3:9:15:21:23:69 || 1/1 5/4 23/16 3/2 7/4 23/12 ||  ||
||  || 23 || 105:315:345:483:805:2415 || 1/1 24/23 6/5 3/2 36/23 12/7 ||  ||

Original HTML content:

<html><head><title>Anomalous Saturated Suspensions</title></head><body>Below is a complete list of <a class="wiki_link_ext" href="http://x31eq.com/ass.htm" rel="nofollow">Anomalous Saturated Suspensions</a> through the 23-limit. Each chord listed is either ambitonal, or has a <a class="wiki_link" href="/Otonality%20and%20utonality">o/utonal</a> inverse which is also an ASS.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:0:&lt;h2&gt; --><h2 id="toc0"><a name="x-Naming"></a><!-- ws:end:WikiTextHeadingRule:0 -->Naming</h2>
<br />
For each odd limit we can list ambitonal chords in lexicographic order by harmonic series representation, along with o/utonal chord pairs according to the harmonic series representation of the otonal chord in the pair. Each chord is then designated with a capital &quot;A&quot; whose subscript is a tuple, where the first value is the odd limit and the second value is the index in the list for that odd limit. This is followed by an &quot;a,&quot; &quot;o,&quot; or &quot;u&quot; depending on whether the chord is ambitonal, otonal, or utonal.<br />
<br />


<table class="wiki_table">
    <tr>
        <th>Name<br />
</th>
        <th>Odd Limit<br />
</th>
        <th>Harmonic Series<br />
</th>
        <th>Scale<br />
</th>
        <th>Scale Name<br />
</th>
    </tr>
    <tr>
        <td>A_{9,1a}<br />
</td>
        <td>9<br />
</td>
        <td>3:5:9:15<br />
</td>
        <td>1/1 6/5 3/2 9/5<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>9<br />
</td>
        <td>3:7:9:21<br />
</td>
        <td>1/1 7/6 3/2 7/4<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>11<br />
</td>
        <td>3:9:11:33<br />
</td>
        <td>1/1 11/8 3/2 11/6<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>13<br />
</td>
        <td>3:9:13:39<br />
</td>
        <td>1/1 13/12 3/2 13/8<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>15<br />
</td>
        <td>3:7:9:15:21<br />
</td>
        <td>1/1 7/6 5/4 3/2 7/4<br />
</td>
        <td>Hendrix<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>15<br />
</td>
        <td>15:21:35:45:105<br />
</td>
        <td>1/1 7/6 7/5 3/2 7/4<br />
</td>
        <td>Inverted Hendrix<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>15<br />
</td>
        <td>3:9:11:15:33<br />
</td>
        <td>1/1 5/4 11/8 3/2 11/6<br />
</td>
        <td>11-Hendrix<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>15<br />
</td>
        <td>15:33:45:55:165<br />
</td>
        <td>1/1 11/10 11/8 3/2 11/6<br />
</td>
        <td>Inverted 11-Hendrix<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>15<br />
</td>
        <td>3:9:13:15:39<br />
</td>
        <td>1/1 13/12 5/4 3/2 13/8<br />
</td>
        <td>13-Hendrix<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>15<br />
</td>
        <td>15:39:45:65:195<br />
</td>
        <td>1/1 13/12 13/10 3/2 13/8<br />
</td>
        <td>Inverted 13-Hendrix<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>17<br />
</td>
        <td>3:9:15:17:51<br />
</td>
        <td>1/1 17/16 5/4 17/12 3/2<br />
</td>
        <td>17-Hendrix<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>17<br />
</td>
        <td>15:45:51:85:255<br />
</td>
        <td>1/1 17/16 17/12 3/2 17/10<br />
</td>
        <td>Inverted 17-Hendrix<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>19<br />
</td>
        <td>3:9:15:19:57<br />
</td>
        <td>1/1 19/16 5/4 3/2 19/12<br />
</td>
        <td>19-Hendrix<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>19<br />
</td>
        <td>15:45:57:95:285<br />
</td>
        <td>1/1 19/16 3/2 19/12 19/10<br />
</td>
        <td>Inverted 19-Hendrix<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>21<br />
</td>
        <td>5:15:21:35:45:105<br />
</td>
        <td>1/1 21/20 9/8 21/16 3/2 7/4<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>21<br />
</td>
        <td>3:5:9:15:21:45<br />
</td>
        <td>1/1 15/14 9/8 9/7 3/2 12/7<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>21<br />
</td>
        <td>7:15:21:35:63:105<br />
</td>
        <td>1/1 15/14 9/8 5/4 3/2 15/8<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>21<br />
</td>
        <td>3:7:9:15:21:63<br />
</td>
        <td>1/1 21/20 9/8 6/5 3/2 9/5<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>21<br />
</td>
        <td>3:9:11:15:21:33<br />
</td>
        <td>1/1 5/4 11/8 3/2 7/4 11/6<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>21<br />
</td>
        <td>105:165:231:315:385:1155<br />
</td>
        <td>1/1 12/11 6/5 3/2 18/11 12/7<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>21<br />
</td>
        <td>3:9:13:15:21:39<br />
</td>
        <td>1/1 13/12 5/4 3/2 13/8 7/4<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>21<br />
</td>
        <td>105:195:273:315:455:1365<br />
</td>
        <td>1/1 6/5 18/13 3/2 12/7 24/13<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>21<br />
</td>
        <td>3:9:15:17:21:51<br />
</td>
        <td>1/1 17/16 5/4 17/12 3/2 7/4<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>21<br />
</td>
        <td>105:255:315:357:595:1785<br />
</td>
        <td>1/1 18/17 6/5 24/17 3/2 12/7<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>21<br />
</td>
        <td>3:9:15:19:21:57<br />
</td>
        <td>1/1 19/16 5/4 3/2 19/12 7/4<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>21<br />
</td>
        <td>105:285:315:399:665:1995<br />
</td>
        <td>1/1 6/5 24/19 3/2 12/7 36/19<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>23<br />
</td>
        <td>3:9:15:21:23:69<br />
</td>
        <td>1/1 5/4 23/16 3/2 7/4 23/12<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>23<br />
</td>
        <td>105:315:345:483:805:2415<br />
</td>
        <td>1/1 24/23 6/5 3/2 36/23 12/7<br />
</td>
        <td><br />
</td>
    </tr>
</table>

</body></html>