26edt

From Xenharmonic Wiki
Revision as of 14:19, 29 November 2011 by Wikispaces>guest (**Imported revision 280254524 - Original comment: **)
Jump to navigation Jump to search

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author guest and made on 2011-11-29 14:19:49 UTC.
The original revision id was 280254524.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

The 26 equal division of 3 (the tritave), divides it into 26 equal parts of 73.152 cents each, corresponding to 16.404 edo. It is contorted in the 7-limit, tempering out the same commas, 245/243 and 3125/3087, as [[13edt]]. In the 11-limit it tempers out 125/121 and 3087/3025, in the 13-limit 175/169, 147/143, and 847/845, and in the 17-limit 119/117. It is the seventh [[The Riemann Zeta Function and Tuning#Removing%20prime|zeta peak tritave division]]. A reason to double 13edt to 26edt is that it approximates the 8th, 13th, 17th, 20th, and 22nd harmonics, in addition to the Bohlen-Pierce harmonies.

Original HTML content:

<html><head><title>26edt</title></head><body>The 26 equal division of 3 (the tritave), divides it into 26 equal parts of 73.152 cents each, corresponding to 16.404 edo. It is contorted in the 7-limit, tempering out the same commas, 245/243 and 3125/3087, as <a class="wiki_link" href="/13edt">13edt</a>. In the 11-limit it tempers out 125/121 and 3087/3025, in the 13-limit 175/169, 147/143, and 847/845, and in the 17-limit 119/117. It is the seventh <a class="wiki_link" href="/The%20Riemann%20Zeta%20Function%20and%20Tuning#Removing%20prime">zeta peak tritave division</a>. A reason to double 13edt to 26edt is that it approximates the 8th, 13th, 17th, 20th, and 22nd harmonics, in addition to the Bohlen-Pierce harmonies.</body></html>