332edo
Theory
332edo is consistent to the 7-odd-limit. The equal temperament tempers out 2401/2400, 19683/19600, 118098/117649, and 29360128/29296875 in the 7-limit. It provides the optimal patent val for 11-, 13-, and 17-limit sedia.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | -0.75 | +0.43 | -0.15 | +1.69 | +1.64 | -0.14 | -1.13 | +0.64 | +0.54 | +0.75 |
Relative (%) | +0.0 | -20.8 | +12.0 | -4.2 | +46.9 | +45.4 | -3.8 | -31.2 | +17.7 | +15.0 | +20.7 | |
Steps (reduced) |
332 (0) |
526 (194) |
771 (107) |
932 (268) |
1149 (153) |
1229 (233) |
1357 (29) |
1410 (82) |
1502 (174) |
1613 (285) |
1645 (317) |
Subsets and supersets
Since 332 factors into 22 × 83, 332edo has subset edos 2, 4, 83, and 166.
Regular temperament properties
Template:Comma basis begin |- | 2.3.5 | [-13 17 -6⟩, [-53 10 16⟩ | [⟨332 526 771]] | 0.0955 | 0.2778 | 7.69 |- | 2.3.5.7 | 2401/2400, 19683/19600, 29360128/29296875 | [⟨332 526 771 932]] | 0.0851 | 0.2412 | 6.67 Template:Comma basis end
Rank-2 temperaments
Template:Rank-2 begin
|-
| 1
| 33\332
| 119.28
| 15/14
| Septidiasemi
|-
| 1
| 75\332
| 271.08
| 1024/875
| Quasiorwell
|-
| 1
| 127\332
| 459.04
| 125/96
| Majvam
|-
| 1
| 143\332
| 516.87
| 27/20
| Gravity
|-
| 2
| 143\332
(23\332)
| 516.87
(83.13)
| 27/20
(21/20)
| Harry
|-
| 2
| 45\332
| 162.65
| 1125/1024
| Kwazy
Template:Rank-2 end
Template:Orf