← 442edo 443edo 444edo →
Prime factorization 443 (prime)
Step size 2.7088 ¢ 
Fifth 259\443 (701.58 ¢)
Semitones (A1:m2) 41:34 (111.1 ¢ : 92.1 ¢)
Consistency limit 3
Distinct consistency limit 3

Template:EDO intro

Theory

443edo is inconsistent to the 5-odd-limit and the error of harmonic 5 is quite large. To start with, the patent val 443 702 1029 1244 1533] as well as the 443cde val 443 702 1028 1243 1532] are worth considering.

Using the patent val, the equal temperament tempers out 6144/6125, 32805/32768, and 67108864/66976875 in the 7-limit; 540/539, 5632/5625, 8019/8000, and 131072/130977 in the 11-limit. It supports hemischis, the 130 & 313 temperament.

Prime harmonics

Approximation of prime harmonics in 443edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 -0.37 +1.05 +0.93 +1.28 -0.80 +0.69 +0.46 +0.17 -0.23 +0.79
Relative (%) +0.0 -13.8 +38.6 +34.2 +47.2 -29.5 +25.4 +16.8 +6.2 -8.6 +29.1
Steps
(reduced)
443
(0)
702
(259)
1029
(143)
1244
(358)
1533
(204)
1639
(310)
1811
(39)
1882
(110)
2004
(232)
2152
(380)
2195
(423)

Subsets and supersets

443edo is the 86th prime edo. 886edo, which doubles it, gives a good correction until the 11-limit.

Regular temperament properties

Template:Comma basis begin |- | 2.3 | [-702 443 | [443 702]] | 0.1183 | 0.1183 | 4.37 Template:Comma basis end

Rank-2 temperaments

Template:Rank-2 begin |- | 1 | 92\443 | 249.21 | 15/13 | Hemischis (443) Template:Rank-2 end Template:Orf

Scales

Music

Francium