User:BudjarnLambeth/1ed237.8c

From Xenharmonic Wiki
Jump to navigation Jump to search
← 0ed187/163 1ed187/163 2ed187/163 →
Prime factorization n/a
Step size 237.8 ¢ 
Octave 5\1ed187/163 (1189 ¢)
Twelfth 8\1ed187/163 (1902.4 ¢)
Consistency limit 10
Distinct consistency limit 4
Special properties

1 equal division of 237.8¢ (1ed237.8c), also known as arithmetic pitch sequence of 237.8¢ (APS237.8¢), is an equal nonoctave scale generated by making a continuous chain of intervals of exactly 237.8¢. It is almost exactly 8edt, but retuned to have a slightly more acceptable pseudo-octave. It could be seen as a compromise between 8edt and 5edo, though leaning heavily towards 8edt.

Harmonics

Approximation of harmonics in 1ed237.8c
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -11.00 +0.44 -22.00 +67.29 -10.56 -39.63 -33.00 +0.89 +56.29 -108.72 -21.56
Relative (%) -4.6 +0.2 -9.3 +28.3 -4.4 -16.7 -13.9 +0.4 +23.7 -45.7 -9.1
Step 5 8 10 12 13 14 15 16 17 17 18

5edo, 8edt, 14ed7 for comparison:

Approximation of harmonics in 5edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +0 +18 +0 +94 +18 -9 +0 +36 +94 -71 +18
Relative (%) +0.0 +7.5 +0.0 +39.0 +7.5 -3.7 +0.0 +15.0 +39.0 -29.7 +7.5
Steps
(reduced)
5
(0)
8
(3)
10
(0)
12
(2)
13
(3)
14
(4)
15
(0)
16
(1)
17
(2)
17
(2)
18
(3)
Approximation of harmonics in 8edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -11 +0 -23 +67 -11 -40 -34 +0 +55 -110 -23
Relative (%) -4.7 +0.0 -9.5 +28.0 -4.7 -17.0 -14.2 +0.0 +23.3 -46.1 -9.5
Steps
(reduced)
5
(5)
8
(0)
10
(2)
12
(4)
13
(5)
14
(6)
15
(7)
16
(0)
17
(1)
17
(1)
18
(2)
Approximation of harmonics in 14ed7
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +3 +23 +6 +101 +26 +0 +9 +46 +104 -61 +29
Relative (%) +1.3 +9.6 +2.6 +42.1 +10.9 +0.0 +3.9 +19.2 +43.4 -25.2 +12.2
Steps
(reduced)
5
(5)
8
(8)
10
(10)
12
(12)
13
(13)
14
(0)
15
(1)
16
(2)
17
(3)
17
(3)
18
(4)

Intervals

Degree of 1ed65c Cents Value
0 0
1 237.8
2 475.6
3 713.4
4 951.2
5 1189.0
6 1426.8
7 1664.6
8 1902.4