Breedsmic temperaments

From Xenharmonic Wiki
Revision as of 15:17, 16 February 2012 by Wikispaces>genewardsmith (**Imported revision 302512678 - Original comment: **)
Jump to navigation Jump to search

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author genewardsmith and made on 2012-02-16 15:17:30 UTC.
The original revision id was 302512678.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

[[toc|flat]]


Breedsmic temperaments are rank two temperaments tempering out the breedsma, |-5 -1 -2 4> = 2401/2400. This is the amount by which two 49/40 intervals exceed 3/2, and by which two 60/49 intervals fall short. Either of these represent a neutral third interval which is highly characteristic of breedsmic tempering; any tuning system (12edo, for example) which does not possess a neutral third cannot be tempering out the breedsma.

It is also the amount by which four stacked 10/7 intervals exceed 25/6: 10000/2401 * 2401/2400 = 10000/2400 = 25/6, which is two octaves above the chromatic semitone, 25/24. We might note also that 49/40 * 10/7 = 7/4 and 49/40 * (10/7)^2 = 5/2, relationships which will be significant in any breedsmic temperament. As a consequence of these facts, the 49/40+60/49 neutral third and the 7/5 and 10/7 intervals tend to have relatively low complexity in a breedsmic system.

=Hemififths= 
Hemififths tempers out 5120/5103, the hemifamity comma, and 10976/10935, hemimage. It has a neutral third as a generator, with [[99edo]] and [[140edo]] providing good tunings, and [[239edo]] an even better one; and other possible tunings are (160)^(1/25), giving just 5s, the 7 and 9 limit minimax tuning, or 14^(1/13), giving just 7s. It may be called the 41&58 temperament and has wedgie <<2 25 13 35 15 -40||, which tells us that it requires 25 generator steps to get to the class for major thirds, whereas the 7 is half as complex, and hence hemififths makes for a good no-fives temperament, to which the 17 and 24 note MOS are suited. The full force of this highly accurate temperament can be found using the 41 note MOS or even the 34 note 2MOS.

By adding 243/242 (which also means 441/440, 540/539 and 896/891) to the commas, hemififths extends to a less accurate 11-limit version, but one where 11/4 is only five generator steps. [[99edo]] is an excellent tuning; one which loses little of the accuracy of the 7-limit but improves the 11-limit a bit. Now adding 144/143 brings in the 13-limit with less accuracy yet, but with very low complexity, as the generator can be taken to be 16/13. 99 remains a good tuning choice.

Commas: 2401/2400, 5120/5103

7 and 9-limit minimax
[|1 0 0 0>, |7/5, 0, 2/25, 0>, |0 0 1 0>, |8/5 0 13/25 0>]
Eigenvalues: 2, 5

Algebraic generator: (2 + sqrt(2))/2

Map: [<1 1 -5 -1|, <0 2 25 13|]
EDOs: [[41edo|41]], [[58edo|58]], [[99edo|99]], [[239edo|239]], [[338edo|338]]
Badness: 0.0222

==11-limit== 
Commas: 243/242, 441/440, 896/891

POTE generator: ~11/9 = 351.521

Map: [<1 1 -5 -1 2|, <0 2 25 13 5|]
EDOs: 7, 17, 41, 58, 99
Badness: 0.0235

==13-limit== 
Commas: 144/143, 196/195, 243/242, 364/363

POTE generator: ~11/9 = 351.573

Map: [<1 1 -5 -1 2 4|, <0 2 25 13 5 -1|]
EDOs: 7, 17, 41, 58, 99
Badness: 0.0191

=Semihemi=
Commas: 2401/2400, 3388/3375, 9801/9800

POTE generator: ~49/40 = 351.505

Map: [<2 0 -35 -15 -47|, <0 2 25 13 34|]
EDOs: 58, 140, 198, 734bc, 932bcd, 1130bcd
Badness: 42.487

==13-limit==
Commas: 352/351, 676/675, 847/845, 1716/1715

POTE generator: ~49/40 = 351.502

Map: [<2 0 -35 -15 -47 -37|, <0 2 25 13 34 28|]
EDOs: 58, 140, 198, 536f, 734bcf, 932bcdf
Badness: 0.0212

=Tertiaseptal= 
Aside from the breedsma, tertiaseptal tempers out 65625/65536, the horwell comma, 703125/702464, the meter, and 2100875/2097152. It can be described as the 140&171 temperament, and 256/245, 1029/1024 less than 21/20, serves as its generator. Three of these fall short of 8/7 by 2100875/2097152, and the generator can be taken as 1/3 of an 8/7 flattened by a fraction of a cent. [[171edo]] makes for an excellent tuning. The 15 or 16 note MOS can be used to explore no-threes harmony, and the 31 note MOS gives plenty of room for those as well.

Commas: 2401/2400, 65625/65536

POTE generator: ~256/245 = 77.191

Map: [<1 3 2 3|, <0 -22 5 -3|]
EDOs: 15, 16, 31, 109, 140, 171
Badness: 0.0130

==11-limit== 
Commas: 243/242, 441/440, 65625/65536

POTE generator: ~256/245 = 77.227

Map: [<1 3 2 3 7|, <0 -22 5 -3 -55|]
EDOs: 15, 16, 31, 171, 202
Badness: 0.0356

==Tertia==
Commas: 385/384, 1331/1323, 1375/1372

POTE generator: ~22/21 = 77.173

Map: [<1 3 2 3 5|, <0 -22 5 -3 -24|]
EDOs: 31, 109, 140, 171e, 311e
Badness: 0.0302

=Harry= 
Commas: 2401/2400, 19683/19600

Harry adds cataharry, 19683/19600, to the set of commas. It may be described as the 58&72 temperament, with wedgie <<12 34 20 26 -2 -49||. The period is half an octave, and the generator 21/20, with generator tunings of 9\130 or 14\202 being good choices. MOS of size 14, 16, 30, 44 or 58 are among the scale choices.

Harry becomes much more interesting as we move to the 11-limit, where we can add 243/242, 441/440 and 540/539 to the set of commas. 130 and especially 202 still make for good tuning choices, and the octave part of the wedgie is <<12 34 20 30 ...||.

Similar comments apply to the 13-limit, where we can add 351/350 and 364/363 to the commas, with <<12 34 20 30 52 ...|| as the octave wedgie. [[130edo]] is again a good tuning choice, but even better might be tuning 7s justly, which can be done via a generator of 83.1174 cents. 72 notes of harry gives plenty of room even for the 13-limit harmonies.

[[POTE tuning|POTE generator]]: ~21/20 = 83.156

Map: [<2 4 7 7|, <0 -6 -17 -10|]
Wedgie: <<12 34 20 26 -2 -49||
EDOs: 14, 58, 72, 130, 202, 534, 938
Badness: 0.0341

==11-limit== 
Commas: 243/242, 441/440, 4000/3993

[[POTE tuning|POTE generator]]: ~21/20 = 83.167

Map: [<2 4 7 7 9|, <0 -6 -17 -10 -15|]
EDOs: 14, 58, 72, 130, 202
Badness: 0.0159

==13-limit== 
Commas: 243/242, 351/350, 441/440, 676/675

[[POTE tuning|POTE generator]]: ~21/20 = 83.116

Map: [<2 4 7 7 9 11|, <0 -6 -17 -10 -15 -26|]
EDOs: 14, 58, 72, 130, 462
Badness: 0.0130

=Quasiorwell= 
In addition to 2401/2400, quasiorwell tempers out 29360128/29296875 = |22 -1 -10 1>. It has a wedgie <<38 -3 8 -93 -94 27||. It has a generator 1024/875, which is 6144/6125 more than 7/6. It may be described as the 31&270 temperament, and as one might expect, 61/270 makes for an excellent tuning choice. Other possibilities are (7/2)^(1/8), giving just 7s, or 384^(1/38), giving pure fifths.

Adding 3025/3024 extends to the 11-limit and gives <<38 -3 8 64 ...|| for the initial wedgie, and as expected, 270 remains an excellent tuning.

Commas: 2401/2400, 29360128/29296875

POTE generator: ~1024/875 = 271.107

Map: [<1 31 0 9|, <0 -38 3 -8|]
EDOs: [[31edo|31]], [[177edo|177]], [[208edo|208]], [[239edo|239]], [[270edo|270]], [[571edo|571]], [[841edo|841]], [[1111edo|1111]]
Badness: 0.0358

==11-limit== 
Commas: 2401/2400, 3025/3024, 5632/5625

POTE generator: ~90/77 = 271.111

Map: [<1 31 0 9 53|, <0 -38 3 -8 -64|]
EDOs: [[31edo|31]], [[208edo|208]], [[239edo|239]], [[270edo|270]]
Badness: 0.0175

==13-limit== 
Commas: 1001/1000, 1716/1715, 3025/3024, 4096/4095

POTE generator: ~90/77 = 271.107

Map: [<1 31 0 9 53 -59|, <0 -38 3 -8 -64 81|]
EDOs: [[31edo|31]], [[239edo|239]], [[270edo|270]], [[571edo|571]], [[841edo|841]], [[1111edo|1111]]
Badness: 0.0179

=Decoid= 
Commas: 2401/2400, 67108864/66976875

POTE generator: ~8/7 = 231.099

Map: [<10 0 47 36|, <0 2 -3 -1|]
Wedgie: <<20 -30 -10 -94 -72 61||
EDOs: 10, 120, 130, 270
Badness: 0.0339

==11-limit== 
Commas: 2401/2400, 5832/5825, 9801/9800

POTE generator: ~8/7 = 231.070

Map: [<10 0 47 36 98|, <0 2 -3 -1 -8|]
EDOs: 130, 270, 670, 940, 1210
Badness: 0.0187

==13-limit== 
Commas: 676/675, 1001/1000, 1716/1715, 4225/4224

POTE generator: ~8/7 = 231.083

Map: [<10 0 47 36 98 37|, <0 2 -3 -1 -8 0|]
EDOs: 130, 270, 940, 1480
Badness: 0.0135

=Neominor=
Commas: 2401/2400, 177147/175616

POTE generator: ~189/160 = 283.280

Map: [<1 3 12 8|, <0 -6 -41 -22|]
Weggie: <<6 41 22 51 18 -64||
EDOs: 72, 161, 233, 305
Badness: 0.0882

==11-limit==
Commas: 243/242, 441/440, 35937/35840

POTE: ~33/28 = 283.276

Map: [<1 3 12 8 7|, <0 -6 -41 -22 -15|]
EDOs: 72, 161, 233, 305
Badness: 0.0280

==13-limit==
Commas: 169/168, 243/242, 364/363, 441/440

POTE generator: ~13/11 = 283.294

Map: [<1 3 12 8 7 7|, <0 -6 -41 -22 -15 -14|]
EDOs: 72, 161f, 233f
Badness: 0.0269

=Emmthird=
The generator for emmthird temperament is the hemimage third, sharper than 5/4 by the hemimage comma, 10976/10935.

Commas: 2401/2400, 14348907/14336000

POTE generator: ~2744/2187 = 392.988

Map: [<1 11 42 25|,  <0 -14 -59 -33|]
Wedgie: <<14 59 33 61 13 -89||
EDOs: 58, 113, 171, 742, 913, 1084, 1255, 2681d, 3936d
Badness: 0.0167

=Quinmite=
Commas: 2401/2400, 1959552/1953125

POTE generator: ~25/21 = 302.997

Map: [<1 27 24 20|, <0 -34 -29 -23|]
Wedgie: <<34 29 23 -33 -59 -28||
EDOs: 95, 99, 202, 301, 400, 701, 1001c, 1802c, 2903c
Badness: 0.0373

=Unthirds=
Commas: 2401/2400, 68359375/68024448

POTE generator: ~3969/3125 = 416.717

Map: [<1 29 33 25|, <0 -42 -47 -34|]
Wedgie: <<42 47 34 -23 -64 -53||
EDOs: 72, 167, 239, 311, 694, 1005c
Badness: 0.0753

==11-limit==
Commas: 2401/2400, 3025/3024, 4000/3993

POTE generator: ~14/11 = 416.718

Map: [<1 29 33 25 25|, <0 -42 -47 -34 -33|]
EDOs: 72, 167, 239, 311, 1316c
Badness: 0.0229

==13-limit==
Commas: 625/624, 1575/1573, 2080/2079, 2401/2400

POTE generator: ~14/11 = 416.716

Map: [<1 29 33 25 25 99|, <0 -42 -47 -34 -33 -146|]
EDOs: 72, 311, 694, 1005c, 1699cd
Badness: 0.0209

=Newt=
Commas: 2401/2400, 33554432/33480783

POTE generator: ~49/40 = 351.113

Map: [<1 1 19 11|, <0 2 -57 -28|]
Wedgie: <<2 -57 -28 -95 -50 95||
EDOs: 41, 188, 229, 270, 1121, 1391, 1661, 1931, 2201, 6333bc
Badness: 0.0419

==11-limit==
Commas: 2401/2400, 3025/3024, 19712/19683

POTE generator: ~49/40 = 351.115

Map: [<1 1 19 11 -10|, <0 2 -57 -28 46|]
EDOs: 41, 188, 229, 270, 581, 851, 1121, 1972, 3093b, 4214b
Badness: 0.0195

==13-limit==
Commas: 2080/2079, 2401/2400, 3025/3024, 4096/4095

POTE genertaor: ~49/40 = 351.117

Map: [<1 1 19 11 -10 -20|, <0 2 -57 -28 46 81|]
EDOs: 41, 229, 270, 581, 851, 2283b, 3134b
Badness: 0.0138

=Amicable=
Commas: 2401/2400, 1600000/1594323

POTE generator: ~21/20 = 84.880

Map: [<1 3 6 5|, <0 -20 -52 -31|]
Wedgie: <<20 52 31 36 -7 -74||
EDOs: 99, 212, 311, 410, 1131, 1541b
Badness: 0.0455

=Septidiasemi=
Commas: 2401/2400, 2152828125/2147483648

POTE generator: ~15/14 = 119.297

Map: [<1 25 -31 -8|, <0 -26 37 12|]
Wedgie: <<26 -37 -12 -119 -92 76||
EDOs: 10, 151, 161, 171, 3581bcd, 3752bcd, 3923bcd, 4094bcd, 4265bcd, 4436bcd, 4607bcd
Badness: 0.0441

=Maviloid=
Commas: 2401/2400, 1224440064/1220703125

POTE generator: ~1296/875 = 678.810

Map: [<1 31 34 26|, <0 -52 -56 -41|]
Wedgie: <<52 56 41 -32 -81 -62||
EDOs: 76, 99, 274, 373, 472, 571, 1043, 1614
Badness: 0.0576




Original HTML content:

<html><head><title>Breedsmic temperaments</title></head><body><!-- ws:start:WikiTextTocRule:62:&lt;img id=&quot;wikitext@@toc@@flat&quot; class=&quot;WikiMedia WikiMediaTocFlat&quot; title=&quot;Table of Contents&quot; src=&quot;/site/embedthumbnail/toc/flat?w=100&amp;h=16&quot;/&gt; --><!-- ws:end:WikiTextTocRule:62 --><!-- ws:start:WikiTextTocRule:63: --><a href="#Hemififths">Hemififths</a><!-- ws:end:WikiTextTocRule:63 --><!-- ws:start:WikiTextTocRule:64: --><!-- ws:end:WikiTextTocRule:64 --><!-- ws:start:WikiTextTocRule:65: --><!-- ws:end:WikiTextTocRule:65 --><!-- ws:start:WikiTextTocRule:66: --> | <a href="#Semihemi">Semihemi</a><!-- ws:end:WikiTextTocRule:66 --><!-- ws:start:WikiTextTocRule:67: --><!-- ws:end:WikiTextTocRule:67 --><!-- ws:start:WikiTextTocRule:68: --> | <a href="#Tertiaseptal">Tertiaseptal</a><!-- ws:end:WikiTextTocRule:68 --><!-- ws:start:WikiTextTocRule:69: --><!-- ws:end:WikiTextTocRule:69 --><!-- ws:start:WikiTextTocRule:70: --><!-- ws:end:WikiTextTocRule:70 --><!-- ws:start:WikiTextTocRule:71: --> | <a href="#Harry">Harry</a><!-- ws:end:WikiTextTocRule:71 --><!-- ws:start:WikiTextTocRule:72: --><!-- ws:end:WikiTextTocRule:72 --><!-- ws:start:WikiTextTocRule:73: --><!-- ws:end:WikiTextTocRule:73 --><!-- ws:start:WikiTextTocRule:74: --> | <a href="#Quasiorwell">Quasiorwell</a><!-- ws:end:WikiTextTocRule:74 --><!-- ws:start:WikiTextTocRule:75: --><!-- ws:end:WikiTextTocRule:75 --><!-- ws:start:WikiTextTocRule:76: --><!-- ws:end:WikiTextTocRule:76 --><!-- ws:start:WikiTextTocRule:77: --> | <a href="#Decoid">Decoid</a><!-- ws:end:WikiTextTocRule:77 --><!-- ws:start:WikiTextTocRule:78: --><!-- ws:end:WikiTextTocRule:78 --><!-- ws:start:WikiTextTocRule:79: --><!-- ws:end:WikiTextTocRule:79 --><!-- ws:start:WikiTextTocRule:80: --> | <a href="#Neominor">Neominor</a><!-- ws:end:WikiTextTocRule:80 --><!-- ws:start:WikiTextTocRule:81: --><!-- ws:end:WikiTextTocRule:81 --><!-- ws:start:WikiTextTocRule:82: --><!-- ws:end:WikiTextTocRule:82 --><!-- ws:start:WikiTextTocRule:83: --> | <a href="#Emmthird">Emmthird</a><!-- ws:end:WikiTextTocRule:83 --><!-- ws:start:WikiTextTocRule:84: --> | <a href="#Quinmite">Quinmite</a><!-- ws:end:WikiTextTocRule:84 --><!-- ws:start:WikiTextTocRule:85: --> | <a href="#Unthirds">Unthirds</a><!-- ws:end:WikiTextTocRule:85 --><!-- ws:start:WikiTextTocRule:86: --><!-- ws:end:WikiTextTocRule:86 --><!-- ws:start:WikiTextTocRule:87: --><!-- ws:end:WikiTextTocRule:87 --><!-- ws:start:WikiTextTocRule:88: --> | <a href="#Newt">Newt</a><!-- ws:end:WikiTextTocRule:88 --><!-- ws:start:WikiTextTocRule:89: --><!-- ws:end:WikiTextTocRule:89 --><!-- ws:start:WikiTextTocRule:90: --><!-- ws:end:WikiTextTocRule:90 --><!-- ws:start:WikiTextTocRule:91: --> | <a href="#Amicable">Amicable</a><!-- ws:end:WikiTextTocRule:91 --><!-- ws:start:WikiTextTocRule:92: --> | <a href="#Septidiasemi">Septidiasemi</a><!-- ws:end:WikiTextTocRule:92 --><!-- ws:start:WikiTextTocRule:93: --> | <a href="#Maviloid">Maviloid</a><!-- ws:end:WikiTextTocRule:93 --><!-- ws:start:WikiTextTocRule:94: -->
<!-- ws:end:WikiTextTocRule:94 --><br />
<br />
Breedsmic temperaments are rank two temperaments tempering out the breedsma, |-5 -1 -2 4&gt; = 2401/2400. This is the amount by which two 49/40 intervals exceed 3/2, and by which two 60/49 intervals fall short. Either of these represent a neutral third interval which is highly characteristic of breedsmic tempering; any tuning system (12edo, for example) which does not possess a neutral third cannot be tempering out the breedsma.<br />
<br />
It is also the amount by which four stacked 10/7 intervals exceed 25/6: 10000/2401 * 2401/2400 = 10000/2400 = 25/6, which is two octaves above the chromatic semitone, 25/24. We might note also that 49/40 * 10/7 = 7/4 and 49/40 * (10/7)^2 = 5/2, relationships which will be significant in any breedsmic temperament. As a consequence of these facts, the 49/40+60/49 neutral third and the 7/5 and 10/7 intervals tend to have relatively low complexity in a breedsmic system.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Hemififths"></a><!-- ws:end:WikiTextHeadingRule:0 -->Hemififths</h1>
 Hemififths tempers out 5120/5103, the hemifamity comma, and 10976/10935, hemimage. It has a neutral third as a generator, with <a class="wiki_link" href="/99edo">99edo</a> and <a class="wiki_link" href="/140edo">140edo</a> providing good tunings, and <a class="wiki_link" href="/239edo">239edo</a> an even better one; and other possible tunings are (160)^(1/25), giving just 5s, the 7 and 9 limit minimax tuning, or 14^(1/13), giving just 7s. It may be called the 41&amp;58 temperament and has wedgie &lt;&lt;2 25 13 35 15 -40||, which tells us that it requires 25 generator steps to get to the class for major thirds, whereas the 7 is half as complex, and hence hemififths makes for a good no-fives temperament, to which the 17 and 24 note MOS are suited. The full force of this highly accurate temperament can be found using the 41 note MOS or even the 34 note 2MOS.<br />
<br />
By adding 243/242 (which also means 441/440, 540/539 and 896/891) to the commas, hemififths extends to a less accurate 11-limit version, but one where 11/4 is only five generator steps. <a class="wiki_link" href="/99edo">99edo</a> is an excellent tuning; one which loses little of the accuracy of the 7-limit but improves the 11-limit a bit. Now adding 144/143 brings in the 13-limit with less accuracy yet, but with very low complexity, as the generator can be taken to be 16/13. 99 remains a good tuning choice.<br />
<br />
Commas: 2401/2400, 5120/5103<br />
<br />
7 and 9-limit minimax<br />
[|1 0 0 0&gt;, |7/5, 0, 2/25, 0&gt;, |0 0 1 0&gt;, |8/5 0 13/25 0&gt;]<br />
Eigenvalues: 2, 5<br />
<br />
Algebraic generator: (2 + sqrt(2))/2<br />
<br />
Map: [&lt;1 1 -5 -1|, &lt;0 2 25 13|]<br />
EDOs: <a class="wiki_link" href="/41edo">41</a>, <a class="wiki_link" href="/58edo">58</a>, <a class="wiki_link" href="/99edo">99</a>, <a class="wiki_link" href="/239edo">239</a>, <a class="wiki_link" href="/338edo">338</a><br />
Badness: 0.0222<br />
<br />
<!-- ws:start:WikiTextHeadingRule:2:&lt;h2&gt; --><h2 id="toc1"><a name="Hemififths-11-limit"></a><!-- ws:end:WikiTextHeadingRule:2 -->11-limit</h2>
 Commas: 243/242, 441/440, 896/891<br />
<br />
POTE generator: ~11/9 = 351.521<br />
<br />
Map: [&lt;1 1 -5 -1 2|, &lt;0 2 25 13 5|]<br />
EDOs: 7, 17, 41, 58, 99<br />
Badness: 0.0235<br />
<br />
<!-- ws:start:WikiTextHeadingRule:4:&lt;h2&gt; --><h2 id="toc2"><a name="Hemififths-13-limit"></a><!-- ws:end:WikiTextHeadingRule:4 -->13-limit</h2>
 Commas: 144/143, 196/195, 243/242, 364/363<br />
<br />
POTE generator: ~11/9 = 351.573<br />
<br />
Map: [&lt;1 1 -5 -1 2 4|, &lt;0 2 25 13 5 -1|]<br />
EDOs: 7, 17, 41, 58, 99<br />
Badness: 0.0191<br />
<br />
<!-- ws:start:WikiTextHeadingRule:6:&lt;h1&gt; --><h1 id="toc3"><a name="Semihemi"></a><!-- ws:end:WikiTextHeadingRule:6 -->Semihemi</h1>
Commas: 2401/2400, 3388/3375, 9801/9800<br />
<br />
POTE generator: ~49/40 = 351.505<br />
<br />
Map: [&lt;2 0 -35 -15 -47|, &lt;0 2 25 13 34|]<br />
EDOs: 58, 140, 198, 734bc, 932bcd, 1130bcd<br />
Badness: 42.487<br />
<br />
<!-- ws:start:WikiTextHeadingRule:8:&lt;h2&gt; --><h2 id="toc4"><a name="Semihemi-13-limit"></a><!-- ws:end:WikiTextHeadingRule:8 -->13-limit</h2>
Commas: 352/351, 676/675, 847/845, 1716/1715<br />
<br />
POTE generator: ~49/40 = 351.502<br />
<br />
Map: [&lt;2 0 -35 -15 -47 -37|, &lt;0 2 25 13 34 28|]<br />
EDOs: 58, 140, 198, 536f, 734bcf, 932bcdf<br />
Badness: 0.0212<br />
<br />
<!-- ws:start:WikiTextHeadingRule:10:&lt;h1&gt; --><h1 id="toc5"><a name="Tertiaseptal"></a><!-- ws:end:WikiTextHeadingRule:10 -->Tertiaseptal</h1>
 Aside from the breedsma, tertiaseptal tempers out 65625/65536, the horwell comma, 703125/702464, the meter, and 2100875/2097152. It can be described as the 140&amp;171 temperament, and 256/245, 1029/1024 less than 21/20, serves as its generator. Three of these fall short of 8/7 by 2100875/2097152, and the generator can be taken as 1/3 of an 8/7 flattened by a fraction of a cent. <a class="wiki_link" href="/171edo">171edo</a> makes for an excellent tuning. The 15 or 16 note MOS can be used to explore no-threes harmony, and the 31 note MOS gives plenty of room for those as well.<br />
<br />
Commas: 2401/2400, 65625/65536<br />
<br />
POTE generator: ~256/245 = 77.191<br />
<br />
Map: [&lt;1 3 2 3|, &lt;0 -22 5 -3|]<br />
EDOs: 15, 16, 31, 109, 140, 171<br />
Badness: 0.0130<br />
<br />
<!-- ws:start:WikiTextHeadingRule:12:&lt;h2&gt; --><h2 id="toc6"><a name="Tertiaseptal-11-limit"></a><!-- ws:end:WikiTextHeadingRule:12 -->11-limit</h2>
 Commas: 243/242, 441/440, 65625/65536<br />
<br />
POTE generator: ~256/245 = 77.227<br />
<br />
Map: [&lt;1 3 2 3 7|, &lt;0 -22 5 -3 -55|]<br />
EDOs: 15, 16, 31, 171, 202<br />
Badness: 0.0356<br />
<br />
<!-- ws:start:WikiTextHeadingRule:14:&lt;h2&gt; --><h2 id="toc7"><a name="Tertiaseptal-Tertia"></a><!-- ws:end:WikiTextHeadingRule:14 -->Tertia</h2>
Commas: 385/384, 1331/1323, 1375/1372<br />
<br />
POTE generator: ~22/21 = 77.173<br />
<br />
Map: [&lt;1 3 2 3 5|, &lt;0 -22 5 -3 -24|]<br />
EDOs: 31, 109, 140, 171e, 311e<br />
Badness: 0.0302<br />
<br />
<!-- ws:start:WikiTextHeadingRule:16:&lt;h1&gt; --><h1 id="toc8"><a name="Harry"></a><!-- ws:end:WikiTextHeadingRule:16 -->Harry</h1>
 Commas: 2401/2400, 19683/19600<br />
<br />
Harry adds cataharry, 19683/19600, to the set of commas. It may be described as the 58&amp;72 temperament, with wedgie &lt;&lt;12 34 20 26 -2 -49||. The period is half an octave, and the generator 21/20, with generator tunings of 9\130 or 14\202 being good choices. MOS of size 14, 16, 30, 44 or 58 are among the scale choices.<br />
<br />
Harry becomes much more interesting as we move to the 11-limit, where we can add 243/242, 441/440 and 540/539 to the set of commas. 130 and especially 202 still make for good tuning choices, and the octave part of the wedgie is &lt;&lt;12 34 20 30 ...||.<br />
<br />
Similar comments apply to the 13-limit, where we can add 351/350 and 364/363 to the commas, with &lt;&lt;12 34 20 30 52 ...|| as the octave wedgie. <a class="wiki_link" href="/130edo">130edo</a> is again a good tuning choice, but even better might be tuning 7s justly, which can be done via a generator of 83.1174 cents. 72 notes of harry gives plenty of room even for the 13-limit harmonies.<br />
<br />
<a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: ~21/20 = 83.156<br />
<br />
Map: [&lt;2 4 7 7|, &lt;0 -6 -17 -10|]<br />
Wedgie: &lt;&lt;12 34 20 26 -2 -49||<br />
EDOs: 14, 58, 72, 130, 202, 534, 938<br />
Badness: 0.0341<br />
<br />
<!-- ws:start:WikiTextHeadingRule:18:&lt;h2&gt; --><h2 id="toc9"><a name="Harry-11-limit"></a><!-- ws:end:WikiTextHeadingRule:18 -->11-limit</h2>
 Commas: 243/242, 441/440, 4000/3993<br />
<br />
<a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: ~21/20 = 83.167<br />
<br />
Map: [&lt;2 4 7 7 9|, &lt;0 -6 -17 -10 -15|]<br />
EDOs: 14, 58, 72, 130, 202<br />
Badness: 0.0159<br />
<br />
<!-- ws:start:WikiTextHeadingRule:20:&lt;h2&gt; --><h2 id="toc10"><a name="Harry-13-limit"></a><!-- ws:end:WikiTextHeadingRule:20 -->13-limit</h2>
 Commas: 243/242, 351/350, 441/440, 676/675<br />
<br />
<a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: ~21/20 = 83.116<br />
<br />
Map: [&lt;2 4 7 7 9 11|, &lt;0 -6 -17 -10 -15 -26|]<br />
EDOs: 14, 58, 72, 130, 462<br />
Badness: 0.0130<br />
<br />
<!-- ws:start:WikiTextHeadingRule:22:&lt;h1&gt; --><h1 id="toc11"><a name="Quasiorwell"></a><!-- ws:end:WikiTextHeadingRule:22 -->Quasiorwell</h1>
 In addition to 2401/2400, quasiorwell tempers out 29360128/29296875 = |22 -1 -10 1&gt;. It has a wedgie &lt;&lt;38 -3 8 -93 -94 27||. It has a generator 1024/875, which is 6144/6125 more than 7/6. It may be described as the 31&amp;270 temperament, and as one might expect, 61/270 makes for an excellent tuning choice. Other possibilities are (7/2)^(1/8), giving just 7s, or 384^(1/38), giving pure fifths.<br />
<br />
Adding 3025/3024 extends to the 11-limit and gives &lt;&lt;38 -3 8 64 ...|| for the initial wedgie, and as expected, 270 remains an excellent tuning.<br />
<br />
Commas: 2401/2400, 29360128/29296875<br />
<br />
POTE generator: ~1024/875 = 271.107<br />
<br />
Map: [&lt;1 31 0 9|, &lt;0 -38 3 -8|]<br />
EDOs: <a class="wiki_link" href="/31edo">31</a>, <a class="wiki_link" href="/177edo">177</a>, <a class="wiki_link" href="/208edo">208</a>, <a class="wiki_link" href="/239edo">239</a>, <a class="wiki_link" href="/270edo">270</a>, <a class="wiki_link" href="/571edo">571</a>, <a class="wiki_link" href="/841edo">841</a>, <a class="wiki_link" href="/1111edo">1111</a><br />
Badness: 0.0358<br />
<br />
<!-- ws:start:WikiTextHeadingRule:24:&lt;h2&gt; --><h2 id="toc12"><a name="Quasiorwell-11-limit"></a><!-- ws:end:WikiTextHeadingRule:24 -->11-limit</h2>
 Commas: 2401/2400, 3025/3024, 5632/5625<br />
<br />
POTE generator: ~90/77 = 271.111<br />
<br />
Map: [&lt;1 31 0 9 53|, &lt;0 -38 3 -8 -64|]<br />
EDOs: <a class="wiki_link" href="/31edo">31</a>, <a class="wiki_link" href="/208edo">208</a>, <a class="wiki_link" href="/239edo">239</a>, <a class="wiki_link" href="/270edo">270</a><br />
Badness: 0.0175<br />
<br />
<!-- ws:start:WikiTextHeadingRule:26:&lt;h2&gt; --><h2 id="toc13"><a name="Quasiorwell-13-limit"></a><!-- ws:end:WikiTextHeadingRule:26 -->13-limit</h2>
 Commas: 1001/1000, 1716/1715, 3025/3024, 4096/4095<br />
<br />
POTE generator: ~90/77 = 271.107<br />
<br />
Map: [&lt;1 31 0 9 53 -59|, &lt;0 -38 3 -8 -64 81|]<br />
EDOs: <a class="wiki_link" href="/31edo">31</a>, <a class="wiki_link" href="/239edo">239</a>, <a class="wiki_link" href="/270edo">270</a>, <a class="wiki_link" href="/571edo">571</a>, <a class="wiki_link" href="/841edo">841</a>, <a class="wiki_link" href="/1111edo">1111</a><br />
Badness: 0.0179<br />
<br />
<!-- ws:start:WikiTextHeadingRule:28:&lt;h1&gt; --><h1 id="toc14"><a name="Decoid"></a><!-- ws:end:WikiTextHeadingRule:28 -->Decoid</h1>
 Commas: 2401/2400, 67108864/66976875<br />
<br />
POTE generator: ~8/7 = 231.099<br />
<br />
Map: [&lt;10 0 47 36|, &lt;0 2 -3 -1|]<br />
Wedgie: &lt;&lt;20 -30 -10 -94 -72 61||<br />
EDOs: 10, 120, 130, 270<br />
Badness: 0.0339<br />
<br />
<!-- ws:start:WikiTextHeadingRule:30:&lt;h2&gt; --><h2 id="toc15"><a name="Decoid-11-limit"></a><!-- ws:end:WikiTextHeadingRule:30 -->11-limit</h2>
 Commas: 2401/2400, 5832/5825, 9801/9800<br />
<br />
POTE generator: ~8/7 = 231.070<br />
<br />
Map: [&lt;10 0 47 36 98|, &lt;0 2 -3 -1 -8|]<br />
EDOs: 130, 270, 670, 940, 1210<br />
Badness: 0.0187<br />
<br />
<!-- ws:start:WikiTextHeadingRule:32:&lt;h2&gt; --><h2 id="toc16"><a name="Decoid-13-limit"></a><!-- ws:end:WikiTextHeadingRule:32 -->13-limit</h2>
 Commas: 676/675, 1001/1000, 1716/1715, 4225/4224<br />
<br />
POTE generator: ~8/7 = 231.083<br />
<br />
Map: [&lt;10 0 47 36 98 37|, &lt;0 2 -3 -1 -8 0|]<br />
EDOs: 130, 270, 940, 1480<br />
Badness: 0.0135<br />
<br />
<!-- ws:start:WikiTextHeadingRule:34:&lt;h1&gt; --><h1 id="toc17"><a name="Neominor"></a><!-- ws:end:WikiTextHeadingRule:34 -->Neominor</h1>
Commas: 2401/2400, 177147/175616<br />
<br />
POTE generator: ~189/160 = 283.280<br />
<br />
Map: [&lt;1 3 12 8|, &lt;0 -6 -41 -22|]<br />
Weggie: &lt;&lt;6 41 22 51 18 -64||<br />
EDOs: 72, 161, 233, 305<br />
Badness: 0.0882<br />
<br />
<!-- ws:start:WikiTextHeadingRule:36:&lt;h2&gt; --><h2 id="toc18"><a name="Neominor-11-limit"></a><!-- ws:end:WikiTextHeadingRule:36 -->11-limit</h2>
Commas: 243/242, 441/440, 35937/35840<br />
<br />
POTE: ~33/28 = 283.276<br />
<br />
Map: [&lt;1 3 12 8 7|, &lt;0 -6 -41 -22 -15|]<br />
EDOs: 72, 161, 233, 305<br />
Badness: 0.0280<br />
<br />
<!-- ws:start:WikiTextHeadingRule:38:&lt;h2&gt; --><h2 id="toc19"><a name="Neominor-13-limit"></a><!-- ws:end:WikiTextHeadingRule:38 -->13-limit</h2>
Commas: 169/168, 243/242, 364/363, 441/440<br />
<br />
POTE generator: ~13/11 = 283.294<br />
<br />
Map: [&lt;1 3 12 8 7 7|, &lt;0 -6 -41 -22 -15 -14|]<br />
EDOs: 72, 161f, 233f<br />
Badness: 0.0269<br />
<br />
<!-- ws:start:WikiTextHeadingRule:40:&lt;h1&gt; --><h1 id="toc20"><a name="Emmthird"></a><!-- ws:end:WikiTextHeadingRule:40 -->Emmthird</h1>
The generator for emmthird temperament is the hemimage third, sharper than 5/4 by the hemimage comma, 10976/10935.<br />
<br />
Commas: 2401/2400, 14348907/14336000<br />
<br />
POTE generator: ~2744/2187 = 392.988<br />
<br />
Map: [&lt;1 11 42 25|,  &lt;0 -14 -59 -33|]<br />
Wedgie: &lt;&lt;14 59 33 61 13 -89||<br />
EDOs: 58, 113, 171, 742, 913, 1084, 1255, 2681d, 3936d<br />
Badness: 0.0167<br />
<br />
<!-- ws:start:WikiTextHeadingRule:42:&lt;h1&gt; --><h1 id="toc21"><a name="Quinmite"></a><!-- ws:end:WikiTextHeadingRule:42 -->Quinmite</h1>
Commas: 2401/2400, 1959552/1953125<br />
<br />
POTE generator: ~25/21 = 302.997<br />
<br />
Map: [&lt;1 27 24 20|, &lt;0 -34 -29 -23|]<br />
Wedgie: &lt;&lt;34 29 23 -33 -59 -28||<br />
EDOs: 95, 99, 202, 301, 400, 701, 1001c, 1802c, 2903c<br />
Badness: 0.0373<br />
<br />
<!-- ws:start:WikiTextHeadingRule:44:&lt;h1&gt; --><h1 id="toc22"><a name="Unthirds"></a><!-- ws:end:WikiTextHeadingRule:44 -->Unthirds</h1>
Commas: 2401/2400, 68359375/68024448<br />
<br />
POTE generator: ~3969/3125 = 416.717<br />
<br />
Map: [&lt;1 29 33 25|, &lt;0 -42 -47 -34|]<br />
Wedgie: &lt;&lt;42 47 34 -23 -64 -53||<br />
EDOs: 72, 167, 239, 311, 694, 1005c<br />
Badness: 0.0753<br />
<br />
<!-- ws:start:WikiTextHeadingRule:46:&lt;h2&gt; --><h2 id="toc23"><a name="Unthirds-11-limit"></a><!-- ws:end:WikiTextHeadingRule:46 -->11-limit</h2>
Commas: 2401/2400, 3025/3024, 4000/3993<br />
<br />
POTE generator: ~14/11 = 416.718<br />
<br />
Map: [&lt;1 29 33 25 25|, &lt;0 -42 -47 -34 -33|]<br />
EDOs: 72, 167, 239, 311, 1316c<br />
Badness: 0.0229<br />
<br />
<!-- ws:start:WikiTextHeadingRule:48:&lt;h2&gt; --><h2 id="toc24"><a name="Unthirds-13-limit"></a><!-- ws:end:WikiTextHeadingRule:48 -->13-limit</h2>
Commas: 625/624, 1575/1573, 2080/2079, 2401/2400<br />
<br />
POTE generator: ~14/11 = 416.716<br />
<br />
Map: [&lt;1 29 33 25 25 99|, &lt;0 -42 -47 -34 -33 -146|]<br />
EDOs: 72, 311, 694, 1005c, 1699cd<br />
Badness: 0.0209<br />
<br />
<!-- ws:start:WikiTextHeadingRule:50:&lt;h1&gt; --><h1 id="toc25"><a name="Newt"></a><!-- ws:end:WikiTextHeadingRule:50 -->Newt</h1>
Commas: 2401/2400, 33554432/33480783<br />
<br />
POTE generator: ~49/40 = 351.113<br />
<br />
Map: [&lt;1 1 19 11|, &lt;0 2 -57 -28|]<br />
Wedgie: &lt;&lt;2 -57 -28 -95 -50 95||<br />
EDOs: 41, 188, 229, 270, 1121, 1391, 1661, 1931, 2201, 6333bc<br />
Badness: 0.0419<br />
<br />
<!-- ws:start:WikiTextHeadingRule:52:&lt;h2&gt; --><h2 id="toc26"><a name="Newt-11-limit"></a><!-- ws:end:WikiTextHeadingRule:52 -->11-limit</h2>
Commas: 2401/2400, 3025/3024, 19712/19683<br />
<br />
POTE generator: ~49/40 = 351.115<br />
<br />
Map: [&lt;1 1 19 11 -10|, &lt;0 2 -57 -28 46|]<br />
EDOs: 41, 188, 229, 270, 581, 851, 1121, 1972, 3093b, 4214b<br />
Badness: 0.0195<br />
<br />
<!-- ws:start:WikiTextHeadingRule:54:&lt;h2&gt; --><h2 id="toc27"><a name="Newt-13-limit"></a><!-- ws:end:WikiTextHeadingRule:54 -->13-limit</h2>
Commas: 2080/2079, 2401/2400, 3025/3024, 4096/4095<br />
<br />
POTE genertaor: ~49/40 = 351.117<br />
<br />
Map: [&lt;1 1 19 11 -10 -20|, &lt;0 2 -57 -28 46 81|]<br />
EDOs: 41, 229, 270, 581, 851, 2283b, 3134b<br />
Badness: 0.0138<br />
<br />
<!-- ws:start:WikiTextHeadingRule:56:&lt;h1&gt; --><h1 id="toc28"><a name="Amicable"></a><!-- ws:end:WikiTextHeadingRule:56 -->Amicable</h1>
Commas: 2401/2400, 1600000/1594323<br />
<br />
POTE generator: ~21/20 = 84.880<br />
<br />
Map: [&lt;1 3 6 5|, &lt;0 -20 -52 -31|]<br />
Wedgie: &lt;&lt;20 52 31 36 -7 -74||<br />
EDOs: 99, 212, 311, 410, 1131, 1541b<br />
Badness: 0.0455<br />
<br />
<!-- ws:start:WikiTextHeadingRule:58:&lt;h1&gt; --><h1 id="toc29"><a name="Septidiasemi"></a><!-- ws:end:WikiTextHeadingRule:58 -->Septidiasemi</h1>
Commas: 2401/2400, 2152828125/2147483648<br />
<br />
POTE generator: ~15/14 = 119.297<br />
<br />
Map: [&lt;1 25 -31 -8|, &lt;0 -26 37 12|]<br />
Wedgie: &lt;&lt;26 -37 -12 -119 -92 76||<br />
EDOs: 10, 151, 161, 171, 3581bcd, 3752bcd, 3923bcd, 4094bcd, 4265bcd, 4436bcd, 4607bcd<br />
Badness: 0.0441<br />
<br />
<!-- ws:start:WikiTextHeadingRule:60:&lt;h1&gt; --><h1 id="toc30"><a name="Maviloid"></a><!-- ws:end:WikiTextHeadingRule:60 -->Maviloid</h1>
Commas: 2401/2400, 1224440064/1220703125<br />
<br />
POTE generator: ~1296/875 = 678.810<br />
<br />
Map: [&lt;1 31 34 26|, &lt;0 -52 -56 -41|]<br />
Wedgie: &lt;&lt;52 56 41 -32 -81 -62||<br />
EDOs: 76, 99, 274, 373, 472, 571, 1043, 1614<br />
Badness: 0.0576</body></html>