62edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>genewardsmith
**Imported revision 339876836 - Original comment: **
Wikispaces>Osmiorisbendi
**Imported revision 339937392 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2012-05-27 13:57:31 UTC</tt>.<br>
: This revision was by author [[User:Osmiorisbendi|Osmiorisbendi]] and made on <tt>2012-05-27 20:34:06 UTC</tt>.<br>
: The original revision id was <tt>339876836</tt>.<br>
: The original revision id was <tt>339937392</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">62edo divides the octave into 62 equal parts of 19.355 cents each. 62 = 2 * 31 and the patent val is a contorted 31edo through the 11-limit; in the 13-limit it tempers out 169/168, 1188/1183, 847/845 and 676/675. It provides the optimal patent val for [[31 comma temperaments#Gallium|gallium]], [[Starling temperaments#Valentine temperament-Semivalentine|semivalentine]] and [[Meantone family#Septimal meantone-Unidecimal meantone aka Huygens-Hemimeantone|hemimeantone]] temperaments.
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">=&lt;span style="color: #790080; font-family: 'Times New Roman',Times,serif; font-size: 113%;"&gt;62 tone equal temperament&lt;/span&gt;=


It is also strong as an 1/8-tone Armodue-Hornbostel system, with the 6th being 35 steps. However, 31 is a "false" quarter-tone system with respect to the same temperament since the Armodue-Hornbostel whole tone is simplest when achieved by a chain of 5 of the septimal minor third at 7\31, which is a good generator for [[Orwell]]. This makes 8\62 an Orwell whole tone as well, so 62 is twice an 1/8-tone system; but this is no real surprise since 1/8-tone systems will have 40 to 80 divisions in the octave as a matter of course.</pre></div>
62edo divides the octave into 62 equal parts of 19.35484 cents each. 62 = 2 * 31 and the patent val is a contorted 31edo through the 11-limit; in the 13-limit it tempers out 169/168, 1188/1183, 847/845 and 676/675. It provides the optimal patent val for [[31 comma temperaments#Gallium|gallium]], [[Starling temperaments#Valentine%20temperament-Semivalentine|semivalentine]] and [[Meantone family#Septimal%20meantone-Unidecimal%20meantone%20aka%20Huygens-Hemimeantone|hemimeantone]] temperaments.
 
It is also strong as an 1/8-tone [[Armodue-Hornbostel]] system, with the 6th being 35 steps. However, 31 is a "false" quarter-tone system with respect to the same temperament since the Armodue-Hornbostel whole tone is simplest when achieved by a chain of 5 of the septimal minor third at 7\31, which is a good generator for [[Orwell]]. This makes 8\62 an Orwell whole tone as well, so 62 is twice an 1/8-tone system; but this is no real surprise since 1/8-tone systems will have 40 to 80 divisions in the octave as a matter of course.
 
===**62-EDO Intervals**===
 
|| **ARMODUE NOMENCLATURE 8;3 RELATION** ||
|| * **Ɨ** = Thick (1/8-tone up)
* **‡** = Semisharp (1/4-tone up)
* **b** = Flat (5/8-tone down)
* **◊** = Node (blindspot sharp/flat 1/2-tone)
* **#** = Sharp (5/8-tone up)
* **v** = Semiflat (1/4-tone down)
* **⌐** = Thin (1/8-tone down) ||
|| Degrees || Cents size || Armodue notation ||  ||
|| 0 || 0 || 1 ||  ||
|| 1 || 19.35484 || 1Ɨ ||  ||
|| 2 || 38.70968 || 1‡ (9#) ||  ||
|| 3 || 58.06452 || 2b ||  ||
|| 4 || 77.41935 || 1◊2 ||  ||
|| 5 || 96.77419 || 1# ||  ||
|| 6 || 116.12903 || 2v ||  ||
|| 7 || 135.48387 || 2⌐ ||  ||
|| 8 || 154.83871 || 2 ||  ||
|| 9 || 174.19355 || 2Ɨ ||  ||
|| 10 || 193.54839 || 2‡ ||  ||
|| 11 || 212.90323 || 3b ||  ||
|| 12 || 232.25806 || 2◊3 ||  ||
|| 13 || 251.6129 || 2# ||  ||
|| 14 || 270.96774 || 3v ||  ||
|| 15 || 290.32258 || 3⌐ ||  ||
|| 16 || 309.67742 || 3 ||  ||
|| 17 || 329.03226 || 3Ɨ ||  ||
|| 18 || 348.3871 || 3‡ ||  ||
|| 19 || 367.74194 || 4b ||  ||
|| 20 || 387.09677 || 3◊4 ||  ||
|| 21 || 406.45161 || 3# ||  ||
|| 22 || 425.80645 || 4v (5b) ||  ||
|| 23 || 445.16129 || 4⌐ ||  ||
|| 24 || 464.51613 || 4 ||  ||
|| 25 || 483.87097 || 4Ɨ (5v) ||  ||
|| 26 || 503.22581 || 5⌐ (4‡) ||  ||
|| 27 || 522.58065 || 5 ||  ||
|| 28 || 541.93548 || 5Ɨ ||  ||
|| 29 || 561.29032 || 5‡ (4#) ||  ||
|| 30 || 580.64516 || 6b ||  ||
|| 31 || 600 || 5◊6 ||  ||
|| 32 || 619.35484 || 5# ||  ||
|| 33 || 638.70968 || 6v ||  ||
|| 34 || 658.06452 || 6⌐ ||  ||
|| 35 || 677.41935 || 6 ||  ||
|| 36 || 696.77419 || 6Ɨ ||  ||
|| 37 || 716.12903 || 6‡ ||  ||
|| 38 || 735.48387 || 7b ||  ||
|| 39 || 754.83871 || 6◊7 ||  ||
|| 40 || 774.19355 || 6# ||  ||
|| 41 || 793.54839 || 7v ||  ||
|| 42 || 812.90323 || 7⌐ ||  ||
|| 43 || 832.25806 || 7 ||  ||
|| 44 || 851.6129 || 7Ɨ ||  ||
|| 45 || 870.96774 || 7‡ ||  ||
|| 46 || 890.32258 || 8b ||  ||
|| 47 || 909.67742 || 7◊8 ||  ||
|| 48 || 929.03226 || 7# ||  ||
|| 49 || 948.3871 || 8v ||  ||
|| 50 || 967.74194 || 8⌐ ||  ||
|| 51 || 987.09677 || 8 ||  ||
|| 52 || 1006.45161 || 8Ɨ ||  ||
|| 53 || 1025.80645 || 8‡ ||  ||
|| 54 || 1045.16129 || 9b ||  ||
|| 55 || 1064.51613 || 8◊9 ||  ||
|| 56 || 1083.87097 || 8# ||  ||
|| 57 || 1103.22581 || 9v (1b) ||  ||
|| 58 || 1122.58065 || 9⌐ ||  ||
|| 59 || 1141.93548 || 9 ||  ||
|| 60 || 1161.29032 || 9Ɨ (1v) ||  ||
|| 61 || 1180.64516 || 1⌐ (9‡) ||  ||</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;62edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;62edo divides the octave into 62 equal parts of 19.355 cents each. 62 = 2 * 31 and the patent val is a contorted 31edo through the 11-limit; in the 13-limit it tempers out 169/168, 1188/1183, 847/845 and 676/675. It provides the optimal patent val for &lt;a class="wiki_link" href="/31%20comma%20temperaments#Gallium"&gt;gallium&lt;/a&gt;, &lt;a class="wiki_link" href="/Starling%20temperaments#Valentine temperament-Semivalentine"&gt;semivalentine&lt;/a&gt; and &lt;a class="wiki_link" href="/Meantone%20family#Septimal meantone-Unidecimal meantone aka Huygens-Hemimeantone"&gt;hemimeantone&lt;/a&gt; temperaments.&lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;62edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="x62 tone equal temperament"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;&lt;span style="color: #790080; font-family: 'Times New Roman',Times,serif; font-size: 113%;"&gt;62 tone equal temperament&lt;/span&gt;&lt;/h1&gt;
&lt;br /&gt;
62edo divides the octave into 62 equal parts of 19.35484 cents each. 62 = 2 * 31 and the patent val is a contorted 31edo through the 11-limit; in the 13-limit it tempers out 169/168, 1188/1183, 847/845 and 676/675. It provides the optimal patent val for &lt;a class="wiki_link" href="/31%20comma%20temperaments#Gallium"&gt;gallium&lt;/a&gt;, &lt;a class="wiki_link" href="/Starling%20temperaments#Valentine%20temperament-Semivalentine"&gt;semivalentine&lt;/a&gt; and &lt;a class="wiki_link" href="/Meantone%20family#Septimal%20meantone-Unidecimal%20meantone%20aka%20Huygens-Hemimeantone"&gt;hemimeantone&lt;/a&gt; temperaments.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
It is also strong as an 1/8-tone Armodue-Hornbostel system, with the 6th being 35 steps. However, 31 is a &amp;quot;false&amp;quot; quarter-tone system with respect to the same temperament since the Armodue-Hornbostel whole tone is simplest when achieved by a chain of 5 of the septimal minor third at 7\31, which is a good generator for &lt;a class="wiki_link" href="/Orwell"&gt;Orwell&lt;/a&gt;. This makes 8\62 an Orwell whole tone as well, so 62 is twice an 1/8-tone system; but this is no real surprise since 1/8-tone systems will have 40 to 80 divisions in the octave as a matter of course.&lt;/body&gt;&lt;/html&gt;</pre></div>
It is also strong as an 1/8-tone &lt;a class="wiki_link" href="/Armodue-Hornbostel"&gt;Armodue-Hornbostel&lt;/a&gt; system, with the 6th being 35 steps. However, 31 is a &amp;quot;false&amp;quot; quarter-tone system with respect to the same temperament since the Armodue-Hornbostel whole tone is simplest when achieved by a chain of 5 of the septimal minor third at 7\31, which is a good generator for &lt;a class="wiki_link" href="/Orwell"&gt;Orwell&lt;/a&gt;. This makes 8\62 an Orwell whole tone as well, so 62 is twice an 1/8-tone system; but this is no real surprise since 1/8-tone systems will have 40 to 80 divisions in the octave as a matter of course.&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc1"&gt;&lt;a name="x62 tone equal temperament--62-EDO Intervals"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;&lt;strong&gt;62-EDO Intervals&lt;/strong&gt;&lt;/h3&gt;
&lt;br /&gt;
 
 
&lt;table class="wiki_table"&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;strong&gt;ARMODUE NOMENCLATURE 8;3 RELATION&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;ul&gt;&lt;li&gt;&lt;strong&gt;Ɨ&lt;/strong&gt; = Thick (1/8-tone up)&lt;/li&gt;&lt;li&gt;&lt;strong&gt;‡&lt;/strong&gt; = Semisharp (1/4-tone up)&lt;/li&gt;&lt;li&gt;&lt;strong&gt;b&lt;/strong&gt; = Flat (5/8-tone down)&lt;/li&gt;&lt;li&gt;&lt;strong&gt;◊&lt;/strong&gt; = Node (blindspot sharp/flat 1/2-tone)&lt;/li&gt;&lt;li&gt;&lt;strong&gt;#&lt;/strong&gt; = Sharp (5/8-tone up)&lt;/li&gt;&lt;li&gt;&lt;strong&gt;v&lt;/strong&gt; = Semiflat (1/4-tone down)&lt;/li&gt;&lt;li&gt;&lt;strong&gt;⌐&lt;/strong&gt; = Thin (1/8-tone down)&lt;/li&gt;&lt;/ul&gt;&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;Degrees&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Cents size&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Armodue notation&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;19.35484&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1Ɨ&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;38.70968&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1‡ (9#)&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;58.06452&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2b&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;77.41935&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1◊2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;96.77419&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1#&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;116.12903&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2v&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;135.48387&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2⌐&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;154.83871&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;174.19355&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2Ɨ&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;193.54839&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2‡&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;212.90323&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;3b&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;232.25806&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2◊3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;251.6129&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2#&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;270.96774&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;3v&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;290.32258&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;3⌐&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;16&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;309.67742&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;329.03226&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;3Ɨ&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;18&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;348.3871&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;3‡&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;19&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;367.74194&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;4b&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;20&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;387.09677&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;3◊4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;406.45161&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;3#&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;22&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;425.80645&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;4v (5b)&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;445.16129&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;4⌐&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;24&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;464.51613&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;483.87097&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;4Ɨ (5v)&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;503.22581&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5⌐ (4‡)&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;27&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;522.58065&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;28&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;541.93548&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5Ɨ&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;29&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;561.29032&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5‡ (4#)&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;30&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;580.64516&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;6b&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;31&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;600&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5◊6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;32&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;619.35484&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5#&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;33&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;638.70968&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;6v&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;34&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;658.06452&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;6⌐&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;35&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;677.41935&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;36&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;696.77419&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;6Ɨ&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;37&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;716.12903&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;6‡&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;38&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;735.48387&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7b&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;39&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;754.83871&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;6◊7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;40&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;774.19355&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;6#&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;41&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;793.54839&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7v&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;42&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;812.90323&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7⌐&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;43&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;832.25806&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;44&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;851.6129&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7Ɨ&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;45&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;870.96774&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7‡&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;46&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;890.32258&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;8b&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;47&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;909.67742&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7◊8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;48&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;929.03226&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7#&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;49&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;948.3871&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;8v&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;50&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;967.74194&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;8⌐&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;51&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;987.09677&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;52&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1006.45161&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;8Ɨ&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;53&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1025.80645&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;8‡&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;54&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1045.16129&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;9b&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;55&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1064.51613&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;8◊9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;56&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1083.87097&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;8#&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;57&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1103.22581&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;9v (1b)&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;58&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1122.58065&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;9⌐&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;59&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1141.93548&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;60&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1161.29032&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;9Ɨ (1v)&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;61&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1180.64516&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1⌐ (9‡)&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;
 
&lt;/body&gt;&lt;/html&gt;</pre></div>

Revision as of 20:34, 27 May 2012

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author Osmiorisbendi and made on 2012-05-27 20:34:06 UTC.
The original revision id was 339937392.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

=<span style="color: #790080; font-family: 'Times New Roman',Times,serif; font-size: 113%;">62 tone equal temperament</span>= 

62edo divides the octave into 62 equal parts of 19.35484 cents each. 62 = 2 * 31 and the patent val is a contorted 31edo through the 11-limit; in the 13-limit it tempers out 169/168, 1188/1183, 847/845 and 676/675. It provides the optimal patent val for [[31 comma temperaments#Gallium|gallium]], [[Starling temperaments#Valentine%20temperament-Semivalentine|semivalentine]] and [[Meantone family#Septimal%20meantone-Unidecimal%20meantone%20aka%20Huygens-Hemimeantone|hemimeantone]] temperaments.

It is also strong as an 1/8-tone [[Armodue-Hornbostel]] system, with the 6th being 35 steps. However, 31 is a "false" quarter-tone system with respect to the same temperament since the Armodue-Hornbostel whole tone is simplest when achieved by a chain of 5 of the septimal minor third at 7\31, which is a good generator for [[Orwell]]. This makes 8\62 an Orwell whole tone as well, so 62 is twice an 1/8-tone system; but this is no real surprise since 1/8-tone systems will have 40 to 80 divisions in the octave as a matter of course.

===**62-EDO Intervals**=== 

|| **ARMODUE NOMENCLATURE 8;3 RELATION** ||
|| * **Ɨ** = Thick (1/8-tone up)
* **‡** = Semisharp (1/4-tone up)
* **b** = Flat (5/8-tone down)
* **◊** = Node (blindspot sharp/flat 1/2-tone)
* **#** = Sharp (5/8-tone up)
* **v** = Semiflat (1/4-tone down)
* **⌐** = Thin (1/8-tone down) ||
|| Degrees || Cents size || Armodue notation ||   ||
|| 0 || 0 || 1 ||   ||
|| 1 || 19.35484 || 1Ɨ ||   ||
|| 2 || 38.70968 || 1‡ (9#) ||   ||
|| 3 || 58.06452 || 2b ||   ||
|| 4 || 77.41935 || 1◊2 ||   ||
|| 5 || 96.77419 || 1# ||   ||
|| 6 || 116.12903 || 2v ||   ||
|| 7 || 135.48387 || 2⌐ ||   ||
|| 8 || 154.83871 || 2 ||   ||
|| 9 || 174.19355 || 2Ɨ ||   ||
|| 10 || 193.54839 || 2‡ ||   ||
|| 11 || 212.90323 || 3b ||   ||
|| 12 || 232.25806 || 2◊3 ||   ||
|| 13 || 251.6129 || 2# ||   ||
|| 14 || 270.96774 || 3v ||   ||
|| 15 || 290.32258 || 3⌐ ||   ||
|| 16 || 309.67742 || 3 ||   ||
|| 17 || 329.03226 || 3Ɨ ||   ||
|| 18 || 348.3871 || 3‡ ||   ||
|| 19 || 367.74194 || 4b ||   ||
|| 20 || 387.09677 || 3◊4 ||   ||
|| 21 || 406.45161 || 3# ||   ||
|| 22 || 425.80645 || 4v (5b) ||   ||
|| 23 || 445.16129 || 4⌐ ||   ||
|| 24 || 464.51613 || 4 ||   ||
|| 25 || 483.87097 || 4Ɨ (5v) ||   ||
|| 26 || 503.22581 || 5⌐ (4‡) ||   ||
|| 27 || 522.58065 || 5 ||   ||
|| 28 || 541.93548 || 5Ɨ ||   ||
|| 29 || 561.29032 || 5‡ (4#) ||   ||
|| 30 || 580.64516 || 6b ||   ||
|| 31 || 600 || 5◊6 ||   ||
|| 32 || 619.35484 || 5# ||   ||
|| 33 || 638.70968 || 6v ||   ||
|| 34 || 658.06452 || 6⌐ ||   ||
|| 35 || 677.41935 || 6 ||   ||
|| 36 || 696.77419 || 6Ɨ ||   ||
|| 37 || 716.12903 || 6‡ ||   ||
|| 38 || 735.48387 || 7b ||   ||
|| 39 || 754.83871 || 6◊7 ||   ||
|| 40 || 774.19355 || 6# ||   ||
|| 41 || 793.54839 || 7v ||   ||
|| 42 || 812.90323 || 7⌐ ||   ||
|| 43 || 832.25806 || 7 ||   ||
|| 44 || 851.6129 || 7Ɨ ||   ||
|| 45 || 870.96774 || 7‡ ||   ||
|| 46 || 890.32258 || 8b ||   ||
|| 47 || 909.67742 || 7◊8 ||   ||
|| 48 || 929.03226 || 7# ||   ||
|| 49 || 948.3871 || 8v ||   ||
|| 50 || 967.74194 || 8⌐ ||   ||
|| 51 || 987.09677 || 8 ||   ||
|| 52 || 1006.45161 || 8Ɨ ||   ||
|| 53 || 1025.80645 || 8‡ ||   ||
|| 54 || 1045.16129 || 9b ||   ||
|| 55 || 1064.51613 || 8◊9 ||   ||
|| 56 || 1083.87097 || 8# ||   ||
|| 57 || 1103.22581 || 9v (1b) ||   ||
|| 58 || 1122.58065 || 9⌐ ||   ||
|| 59 || 1141.93548 || 9 ||   ||
|| 60 || 1161.29032 || 9Ɨ (1v) ||   ||
|| 61 || 1180.64516 || 1⌐ (9‡) ||   ||

Original HTML content:

<html><head><title>62edo</title></head><body><!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="x62 tone equal temperament"></a><!-- ws:end:WikiTextHeadingRule:0 --><span style="color: #790080; font-family: 'Times New Roman',Times,serif; font-size: 113%;">62 tone equal temperament</span></h1>
 <br />
62edo divides the octave into 62 equal parts of 19.35484 cents each. 62 = 2 * 31 and the patent val is a contorted 31edo through the 11-limit; in the 13-limit it tempers out 169/168, 1188/1183, 847/845 and 676/675. It provides the optimal patent val for <a class="wiki_link" href="/31%20comma%20temperaments#Gallium">gallium</a>, <a class="wiki_link" href="/Starling%20temperaments#Valentine%20temperament-Semivalentine">semivalentine</a> and <a class="wiki_link" href="/Meantone%20family#Septimal%20meantone-Unidecimal%20meantone%20aka%20Huygens-Hemimeantone">hemimeantone</a> temperaments.<br />
<br />
It is also strong as an 1/8-tone <a class="wiki_link" href="/Armodue-Hornbostel">Armodue-Hornbostel</a> system, with the 6th being 35 steps. However, 31 is a &quot;false&quot; quarter-tone system with respect to the same temperament since the Armodue-Hornbostel whole tone is simplest when achieved by a chain of 5 of the septimal minor third at 7\31, which is a good generator for <a class="wiki_link" href="/Orwell">Orwell</a>. This makes 8\62 an Orwell whole tone as well, so 62 is twice an 1/8-tone system; but this is no real surprise since 1/8-tone systems will have 40 to 80 divisions in the octave as a matter of course.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:2:&lt;h3&gt; --><h3 id="toc1"><a name="x62 tone equal temperament--62-EDO Intervals"></a><!-- ws:end:WikiTextHeadingRule:2 --><strong>62-EDO Intervals</strong></h3>
 <br />


<table class="wiki_table">
    <tr>
        <td><strong>ARMODUE NOMENCLATURE 8;3 RELATION</strong><br />
</td>
    </tr>
    <tr>
        <td><ul><li><strong>Ɨ</strong> = Thick (1/8-tone up)</li><li><strong>‡</strong> = Semisharp (1/4-tone up)</li><li><strong>b</strong> = Flat (5/8-tone down)</li><li><strong>◊</strong> = Node (blindspot sharp/flat 1/2-tone)</li><li><strong>#</strong> = Sharp (5/8-tone up)</li><li><strong>v</strong> = Semiflat (1/4-tone down)</li><li><strong>⌐</strong> = Thin (1/8-tone down)</li></ul></td>
    </tr>
    <tr>
        <td>Degrees<br />
</td>
        <td>Cents size<br />
</td>
        <td>Armodue notation<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>0<br />
</td>
        <td>0<br />
</td>
        <td>1<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>19.35484<br />
</td>
        <td>1Ɨ<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>38.70968<br />
</td>
        <td>1‡ (9#)<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>58.06452<br />
</td>
        <td>2b<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>77.41935<br />
</td>
        <td>1◊2<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>96.77419<br />
</td>
        <td>1#<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>116.12903<br />
</td>
        <td>2v<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>135.48387<br />
</td>
        <td>2⌐<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>154.83871<br />
</td>
        <td>2<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>174.19355<br />
</td>
        <td>2Ɨ<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td>193.54839<br />
</td>
        <td>2‡<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td>212.90323<br />
</td>
        <td>3b<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td>232.25806<br />
</td>
        <td>2◊3<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td>251.6129<br />
</td>
        <td>2#<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td>270.96774<br />
</td>
        <td>3v<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td>290.32258<br />
</td>
        <td>3⌐<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td>309.67742<br />
</td>
        <td>3<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>17<br />
</td>
        <td>329.03226<br />
</td>
        <td>3Ɨ<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>18<br />
</td>
        <td>348.3871<br />
</td>
        <td>3‡<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>19<br />
</td>
        <td>367.74194<br />
</td>
        <td>4b<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>20<br />
</td>
        <td>387.09677<br />
</td>
        <td>3◊4<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>21<br />
</td>
        <td>406.45161<br />
</td>
        <td>3#<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>22<br />
</td>
        <td>425.80645<br />
</td>
        <td>4v (5b)<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>23<br />
</td>
        <td>445.16129<br />
</td>
        <td>4⌐<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>24<br />
</td>
        <td>464.51613<br />
</td>
        <td>4<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>25<br />
</td>
        <td>483.87097<br />
</td>
        <td>4Ɨ (5v)<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>26<br />
</td>
        <td>503.22581<br />
</td>
        <td>5⌐ (4‡)<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>27<br />
</td>
        <td>522.58065<br />
</td>
        <td>5<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>28<br />
</td>
        <td>541.93548<br />
</td>
        <td>5Ɨ<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>29<br />
</td>
        <td>561.29032<br />
</td>
        <td>5‡ (4#)<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>30<br />
</td>
        <td>580.64516<br />
</td>
        <td>6b<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>31<br />
</td>
        <td>600<br />
</td>
        <td>5◊6<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>32<br />
</td>
        <td>619.35484<br />
</td>
        <td>5#<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>33<br />
</td>
        <td>638.70968<br />
</td>
        <td>6v<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>34<br />
</td>
        <td>658.06452<br />
</td>
        <td>6⌐<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>35<br />
</td>
        <td>677.41935<br />
</td>
        <td>6<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>36<br />
</td>
        <td>696.77419<br />
</td>
        <td>6Ɨ<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>37<br />
</td>
        <td>716.12903<br />
</td>
        <td>6‡<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>38<br />
</td>
        <td>735.48387<br />
</td>
        <td>7b<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>39<br />
</td>
        <td>754.83871<br />
</td>
        <td>6◊7<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>40<br />
</td>
        <td>774.19355<br />
</td>
        <td>6#<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>41<br />
</td>
        <td>793.54839<br />
</td>
        <td>7v<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>42<br />
</td>
        <td>812.90323<br />
</td>
        <td>7⌐<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>43<br />
</td>
        <td>832.25806<br />
</td>
        <td>7<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>44<br />
</td>
        <td>851.6129<br />
</td>
        <td>7Ɨ<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>45<br />
</td>
        <td>870.96774<br />
</td>
        <td>7‡<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>46<br />
</td>
        <td>890.32258<br />
</td>
        <td>8b<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>47<br />
</td>
        <td>909.67742<br />
</td>
        <td>7◊8<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>48<br />
</td>
        <td>929.03226<br />
</td>
        <td>7#<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>49<br />
</td>
        <td>948.3871<br />
</td>
        <td>8v<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>50<br />
</td>
        <td>967.74194<br />
</td>
        <td>8⌐<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>51<br />
</td>
        <td>987.09677<br />
</td>
        <td>8<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>52<br />
</td>
        <td>1006.45161<br />
</td>
        <td>8Ɨ<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>53<br />
</td>
        <td>1025.80645<br />
</td>
        <td>8‡<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>54<br />
</td>
        <td>1045.16129<br />
</td>
        <td>9b<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>55<br />
</td>
        <td>1064.51613<br />
</td>
        <td>8◊9<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>56<br />
</td>
        <td>1083.87097<br />
</td>
        <td>8#<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>57<br />
</td>
        <td>1103.22581<br />
</td>
        <td>9v (1b)<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>58<br />
</td>
        <td>1122.58065<br />
</td>
        <td>9⌐<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>59<br />
</td>
        <td>1141.93548<br />
</td>
        <td>9<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>60<br />
</td>
        <td>1161.29032<br />
</td>
        <td>9Ɨ (1v)<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>61<br />
</td>
        <td>1180.64516<br />
</td>
        <td>1⌐ (9‡)<br />
</td>
        <td><br />
</td>
    </tr>
</table>

</body></html>