6L 1s: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>JosephRuhf
**Imported revision 565207855 - Original comment: **
Wikispaces>FREEZE
No edit summary
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
There are two notable harmonic entropy minima with this [[MOSScales|MOS]] pattern. The first is [[Tetracot_family|tetracot]], in which four generators make a 3/2, and the second is known as [[roulette7|roulette7]], the seven note albitonic scale for the 2.5.7.11.13 subgroup temperament [[Chromatic_pairs#Roulette|roulette]]. (Other temperaments like "luna", "hemithird", and "hemiwürschmidt" have very similar 7-note MOSes.)
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:JosephRuhf|JosephRuhf]] and made on <tt>2015-11-04 15:39:59 UTC</tt>.<br>
: The original revision id was <tt>565207855</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">There are two notable harmonic entropy minima with this [[MOSScales|MOS]] pattern. The first is [[Tetracot family|tetracot]], in which four generators make a 3/2, and the second is known as [[roulette7]], the seven note albitonic scale for the 2.5.7.11.13 subgroup temperament [[Chromatic pairs#Roulette|roulette]]. (Other temperaments like "luna", "hemithird", and "hemiwürschmidt" have very similar 7-note MOSes.)


The 6L+1s pattern also houses a temperament of the 11th and 13th harmonics, for example L=7 s=4 (46 edo) is such a scale.
The 6L+1s pattern also houses a temperament of the 11th and 13th harmonics, for example L=7 s=4 (46 edo) is such a scale.
Scales of this form are always [[Rothenberg propriety|proper]], because there is only one small step.
||||||||||||~ Generator ||~ Cents ||~ Comments ||
|| 1\7 ||  ||  ||  ||  ||  || 171.43 ||=  ||
||  ||  ||  ||  ||  || 6\41 || 175.61 ||= Enipucrop is between here and 1\7 ||
||  ||  ||  ||  || 5\34 ||  || 176.47 ||= Tetracot is around here ||
||  ||  ||  || 4\27 ||  ||  || 177.78 ||=  ||
||  ||  || 3\20 ||  ||  ||  || 180 ||=  ||
||  ||  ||  ||  ||  ||  || 180.815 ||  ||
||  ||  ||  ||  || 8\53 ||  || 181.13 ||=  ||
||  ||  ||  ||  ||  ||  || 1200/(5+phi) ||= Unnamed golden temperament (discussed in [[http://launch.groups.yahoo.com/group/tuning/message/100254|this thread]]) ||
||  ||  ||  || 5\33 ||  ||  || 181.82 ||=  ||
||  ||  ||  ||  ||  ||  || 182.44 ||  ||
||  ||  ||  ||  || 7\46 ||  || 182.61 ||  ||
||  || 2\13 ||  ||  ||  ||  || 184.62 ||= Optimum rank range glacial (L/s=2/1) ||
||  ||  ||  || 5\32 ||  ||  || 187.5 ||  ||
||  ||  ||  ||  ||  ||  || 188.03 ||  ||
||  ||  ||  ||  || 8\51 ||  || 188.235 ||  ||
||  ||  ||  ||  ||  ||  || 188.45 ||= &lt;span style="display: block; text-align: center;"&gt;L/s = e&lt;/span&gt; ||
||  ||  || 3\19 ||  ||  ||  || 189.47 ||= L/s = 3 ||
||  ||  ||  ||  ||  ||  || 189.92 ||= &lt;span style="display: block; text-align: center;"&gt;L/s = pi&lt;/span&gt; ||
||  ||  ||  || 4\25 ||  ||  || 192 ||= L/s = 4 ||
||  ||  ||  ||  || 5\31 ||  || 193.55 ||= Luna/hemithird/roulette is around here ||
|| 1\6 ||  ||  ||  ||  ||  || 200 ||=  ||</pre></div>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;6L 1s&lt;/title&gt;&lt;/head&gt;&lt;body&gt;There are two notable harmonic entropy minima with this &lt;a class="wiki_link" href="/MOSScales"&gt;MOS&lt;/a&gt; pattern. The first is &lt;a class="wiki_link" href="/Tetracot%20family"&gt;tetracot&lt;/a&gt;, in which four generators make a 3/2, and the second is known as &lt;a class="wiki_link" href="/roulette7"&gt;roulette7&lt;/a&gt;, the seven note albitonic scale for the 2.5.7.11.13 subgroup temperament &lt;a class="wiki_link" href="/Chromatic%20pairs#Roulette"&gt;roulette&lt;/a&gt;. (Other temperaments like &amp;quot;luna&amp;quot;, &amp;quot;hemithird&amp;quot;, and &amp;quot;hemiwürschmidt&amp;quot; have very similar 7-note MOSes.)&lt;br /&gt;
&lt;br /&gt;
The 6L+1s pattern also houses a temperament of the 11th and 13th harmonics, for example L=7 s=4 (46 edo) is such a scale.&lt;br /&gt;
Scales of this form are always &lt;a class="wiki_link" href="/Rothenberg%20propriety"&gt;proper&lt;/a&gt;, because there is only one small step.&lt;br /&gt;


Scales of this form are always [[Rothenberg_propriety|proper]], because there is only one small step.


&lt;table class="wiki_table"&gt;
{| class="wikitable"
    &lt;tr&gt;
|-
        &lt;th colspan="6"&gt;Generator&lt;br /&gt;
! colspan="6" | Generator
&lt;/th&gt;
! | Cents
        &lt;th&gt;Cents&lt;br /&gt;
! | Comments
&lt;/th&gt;
|-
        &lt;th&gt;Comments&lt;br /&gt;
| | 1\7
&lt;/th&gt;
| |
    &lt;/tr&gt;
| |
    &lt;tr&gt;
| |
        &lt;td&gt;1\7&lt;br /&gt;
| |
&lt;/td&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| | 171.43
&lt;/td&gt;
| style="text-align:center;" |
        &lt;td&gt;&lt;br /&gt;
|-
&lt;/td&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| | 6\41
&lt;/td&gt;
| | 175.61
        &lt;td&gt;171.43&lt;br /&gt;
| style="text-align:center;" | Enipucrop is between here and 1\7
&lt;/td&gt;
|-
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| |
    &lt;/tr&gt;
| |
    &lt;tr&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| | 5\34
&lt;/td&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| | 176.47
&lt;/td&gt;
| style="text-align:center;" | Tetracot is around here
        &lt;td&gt;&lt;br /&gt;
|-
&lt;/td&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| | 4\27
&lt;/td&gt;
| |
        &lt;td&gt;6\41&lt;br /&gt;
| |
&lt;/td&gt;
| | 177.78
        &lt;td&gt;175.61&lt;br /&gt;
| style="text-align:center;" |
&lt;/td&gt;
|-
        &lt;td style="text-align: center;"&gt;Enipucrop is between here and 1\7&lt;br /&gt;
| |
&lt;/td&gt;
| |
    &lt;/tr&gt;
| | 3\20
    &lt;tr&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| | 180
&lt;/td&gt;
| style="text-align:center;" |
        &lt;td&gt;&lt;br /&gt;
|-
&lt;/td&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| |
        &lt;td&gt;5\34&lt;br /&gt;
| |
&lt;/td&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| | 180.815
        &lt;td&gt;176.47&lt;br /&gt;
| |
&lt;/td&gt;
|-
        &lt;td style="text-align: center;"&gt;Tetracot is around here&lt;br /&gt;
| |
&lt;/td&gt;
| |
    &lt;/tr&gt;
| |
    &lt;tr&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| | 8\53
&lt;/td&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| | 181.13
&lt;/td&gt;
| style="text-align:center;" |
        &lt;td&gt;&lt;br /&gt;
|-
&lt;/td&gt;
| |
        &lt;td&gt;4\27&lt;br /&gt;
| |
&lt;/td&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| | 1200/(5+phi)
        &lt;td&gt;177.78&lt;br /&gt;
| style="text-align:center;" | Unnamed golden temperament (discussed in [http://launch.groups.yahoo.com/group/tuning/message/100254 this thread])
&lt;/td&gt;
|-
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| |
    &lt;/tr&gt;
| |
    &lt;tr&gt;
| | 5\33
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| | 181.82
&lt;/td&gt;
| style="text-align:center;" |
        &lt;td&gt;3\20&lt;br /&gt;
|-
&lt;/td&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| | 182.44
        &lt;td&gt;180&lt;br /&gt;
| |
&lt;/td&gt;
|-
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| |
    &lt;/tr&gt;
| |
    &lt;tr&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| | 7\46
&lt;/td&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| | 182.61
&lt;/td&gt;
| |
        &lt;td&gt;&lt;br /&gt;
|-
&lt;/td&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| | 2\13
&lt;/td&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| | 184.62
        &lt;td&gt;180.815&lt;br /&gt;
| style="text-align:center;" | Optimum rank range glacial (L/s=2/1)
&lt;/td&gt;
|-
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| |
    &lt;/tr&gt;
| |
    &lt;tr&gt;
| | 5\32
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| | 187.5
&lt;/td&gt;
| |
        &lt;td&gt;&lt;br /&gt;
|-
&lt;/td&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| |
        &lt;td&gt;8\53&lt;br /&gt;
| |
&lt;/td&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| | 188.03
        &lt;td&gt;181.13&lt;br /&gt;
| |
&lt;/td&gt;
|-
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| |
    &lt;/tr&gt;
| |
    &lt;tr&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| | 8\51
&lt;/td&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| | 188.235
&lt;/td&gt;
| |
        &lt;td&gt;&lt;br /&gt;
|-
&lt;/td&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| | 188.45
        &lt;td&gt;1200/(5+phi)&lt;br /&gt;
| style="text-align:center;" | <span style="display: block; text-align: center;">L/s = e</span>
&lt;/td&gt;
|-
        &lt;td style="text-align: center;"&gt;Unnamed golden temperament (discussed in &lt;a class="wiki_link_ext" href="http://launch.groups.yahoo.com/group/tuning/message/100254" rel="nofollow"&gt;this thread&lt;/a&gt;)&lt;br /&gt;
| |
&lt;/td&gt;
| |
    &lt;/tr&gt;
| | 3\19
    &lt;tr&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| | 189.47
&lt;/td&gt;
| style="text-align:center;" | L/s = 3
        &lt;td&gt;&lt;br /&gt;
|-
&lt;/td&gt;
| |
        &lt;td&gt;5\33&lt;br /&gt;
| |
&lt;/td&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| | 189.92
        &lt;td&gt;181.82&lt;br /&gt;
| style="text-align:center;" | <span style="display: block; text-align: center;">L/s = pi</span>
&lt;/td&gt;
|-
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| |
    &lt;/tr&gt;
| |
    &lt;tr&gt;
| | 4\25
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| | 192
&lt;/td&gt;
| style="text-align:center;" | L/s = 4
        &lt;td&gt;&lt;br /&gt;
|-
&lt;/td&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| | 5\31
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| | 193.55
        &lt;td&gt;182.44&lt;br /&gt;
| style="text-align:center;" | Luna/hemithird/roulette is around here
&lt;/td&gt;
|-
        &lt;td&gt;&lt;br /&gt;
| | 1\6
&lt;/td&gt;
| |
    &lt;/tr&gt;
| |
    &lt;tr&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| | 200
&lt;/td&gt;
| style="text-align:center;" |
        &lt;td&gt;&lt;br /&gt;
|}
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7\46&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;182.61&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2\13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;184.62&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Optimum rank range glacial (L/s=2/1)&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5\32&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;187.5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;188.03&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;8\51&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;188.235&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;188.45&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;span style="display: block; text-align: center;"&gt;L/s = e&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;3\19&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;189.47&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;L/s = 3&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;189.92&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;span style="display: block; text-align: center;"&gt;L/s = pi&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;4\25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;192&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;L/s = 4&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5\31&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;193.55&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Luna/hemithird/roulette is around here&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1\6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;200&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;
 
&lt;/body&gt;&lt;/html&gt;</pre></div>

Revision as of 00:00, 17 July 2018

There are two notable harmonic entropy minima with this MOS pattern. The first is tetracot, in which four generators make a 3/2, and the second is known as roulette7, the seven note albitonic scale for the 2.5.7.11.13 subgroup temperament roulette. (Other temperaments like "luna", "hemithird", and "hemiwürschmidt" have very similar 7-note MOSes.)

The 6L+1s pattern also houses a temperament of the 11th and 13th harmonics, for example L=7 s=4 (46 edo) is such a scale.

Scales of this form are always proper, because there is only one small step.

Generator Cents Comments
1\7 171.43
6\41 175.61 Enipucrop is between here and 1\7
5\34 176.47 Tetracot is around here
4\27 177.78
3\20 180
180.815
8\53 181.13
1200/(5+phi) Unnamed golden temperament (discussed in this thread)
5\33 181.82
182.44
7\46 182.61
2\13 184.62 Optimum rank range glacial (L/s=2/1)
5\32 187.5
188.03
8\51 188.235
188.45 L/s = e
3\19 189.47 L/s = 3
189.92 L/s = pi
4\25 192 L/s = 4
5\31 193.55 Luna/hemithird/roulette is around here
1\6 200