643edo: Difference between revisions
Improve intro; +prime error table |
+infobox; +RTT table and rank-2 temperaments |
||
Line 1: | Line 1: | ||
{{Infobox ET | |||
| Prime factorization = 643 (prime) | |||
| Step size = 1.86625¢ | |||
| Fifth = 376\643 (701.71¢) | |||
| Semitones = 60:49 (111.98¢ : 91.45¢) | |||
| Consistency = 21 | |||
}} | |||
{{EDO intro|643}} | {{EDO intro|643}} | ||
== Theory == | |||
643edo is uniquely [[consistent]] to the 21-odd-limit, with a generally flat tendency, but the 5th harmonic is only 0.000439 cents sharp as the denominator of a convergent to log<sub>2</sub>5, after [[146edo|146]] and before [[4004edo|4004]]. It tempers out [[32805/32768]] in the 5-limit and [[2401/2400]] in the 7-limit, so that it [[support]]s the [[sesquiquartififths]] temperament. In the 11-limit it tempers out [[3025/3024]] and 151263/151250; in the 13-limit [[1001/1000]], [[1716/1715]] and [[4225/4224]]; in the 17-limit [[1089/1088]], [[1701/1700]], 2431/2430 and [[2601/2600]]; and in the 19-limit 1331/1330, [[1521/1520]], [[1729/1728]], 2376/2375 and 2926/2925. It provides the [[optimal patent val]] for the rank-3 13-limit [[vili]] temperament. | 643edo is uniquely [[consistent]] to the 21-odd-limit, with a generally flat tendency, but the 5th harmonic is only 0.000439 cents sharp as the denominator of a convergent to log<sub>2</sub>5, after [[146edo|146]] and before [[4004edo|4004]]. It tempers out [[32805/32768]] in the 5-limit and [[2401/2400]] in the 7-limit, so that it [[support]]s the [[sesquiquartififths]] temperament. In the 11-limit it tempers out [[3025/3024]] and 151263/151250; in the 13-limit [[1001/1000]], [[1716/1715]] and [[4225/4224]]; in the 17-limit [[1089/1088]], [[1701/1700]], 2431/2430 and [[2601/2600]]; and in the 19-limit 1331/1330, [[1521/1520]], [[1729/1728]], 2376/2375 and 2926/2925. It provides the [[optimal patent val]] for the rank-3 13-limit [[vili]] temperament. | ||
=== Prime harmonics === | |||
{{Harmonics in equal|643|columns=11}} | |||
=== Miscellaneous properties === | |||
643edo is the 117th [[prime edo]]. | 643edo is the 117th [[prime edo]]. | ||
{{ | == Regular temperament properties == | ||
{| class="wikitable center-4 center-5 center-6" | |||
! rowspan="2" | [[Subgroup]] | |||
! rowspan="2" | [[Comma list|Comma List]] | |||
! rowspan="2" | [[Mapping]] | |||
! rowspan="2" | Optimal<br>8ve stretch (¢) | |||
! colspan="2" | Tuning error | |||
|- | |||
! [[TE error|Absolute]] (¢) | |||
! [[TE simple badness|Relative]] (%) | |||
|- | |||
| 2.3 | |||
| {{monzo| -1019 643 }} | |||
| [{{val| 643 1019 }}] | |||
| +0.0771 | |||
| 0.0771 | |||
| 4.13 | |||
|- | |||
| 2.3.5 | |||
| 32805/32768, {{monzo| 1 99 -68 }} | |||
| [{{val| 643 1019 1493 }}] | |||
| +0.0513 | |||
| 0.7270 | |||
| 3.90 | |||
|- | |||
| 2.3.5.7 | |||
| 2401/2400, 32805/32768, {{monzo| 9 21 -17 -1 }} | |||
| [{{val| 643 1019 1493 1805 }}] | |||
| +0.0600 | |||
| 0.0647 | |||
| 3.47 | |||
|- | |||
| 2.3.5.7.11 | |||
| 2401/2400, 3025/3024, 32805/32768, 391314/390625 | |||
| [{{val| 643 1019 1493 1805 2224 }}] | |||
| +0.0927 | |||
| 0.0874 | |||
| 4.68 | |||
|- | |||
| 2.3.5.7.11.13 | |||
| 1001/1000, 1716/1715, 3025/3024, 4225/4224, 32805/32768 | |||
| [{{val| 643 1019 1493 1805 2224 2379 }}] | |||
| +0.1094 | |||
| 0.0881 | |||
| 4.72 | |||
|- | |||
| 2.3.5.7.11.13.17 | |||
| 1001/1000, 1089/1088, 1701/1700, 1716/1715, 2601/2600, 4225/4224 | |||
| [{{val| 643 1019 1493 1805 2224 2379 2628 }}] | |||
| +0.1094 | |||
| 0.0816 | |||
| 4.37 | |||
|- | |||
| 2.3.5.7.11.13.17.19 | |||
| 1001/1000, 1089/1088, 1521/1520, 1701/1700, 1716/1715, 1729/1728, 2601/2600 | |||
| [{{val| 643 1019 1493 1805 2224 2379 2628 2731 }}] | |||
| +0.1186 | |||
| 0.0801 | |||
| 4.29 | |||
|} | |||
=== Rank-2 temperaments === | |||
{| class="wikitable center-all left-5" | |||
|+Table of rank-2 temperaments by generator | |||
! Periods<br>per Octave | |||
! Generator<br>(Reduced) | |||
! Cents<br>(Reduced) | |||
! Associated<br>Ratio | |||
! Temperaments | |||
|- | |||
| 1 | |||
| 94\643 | |||
| 175.43 | |||
| 448/405 | |||
| [[Sesquiquartififths]] | |||
|- | |||
| 1 | |||
| 267\643 | |||
| 498.29 | |||
| 4/3 | |||
| [[Helmholtz]] | |||
|} | |||
[[Category:Equal divisions of the octave|###]] <!-- 3-digit number --> | [[Category:Equal divisions of the octave|###]] <!-- 3-digit number --> |