5040edo: Difference between revisions
m Improved tables, misc. edits, categories |
→Theory: test |
||
Line 33: | Line 33: | ||
| 10 | | 10 | ||
| 7 | | 7 | ||
|} | |||
{| class="wikitable" | |||
|+Approximation of prime harmoniics in 5040edo | |||
! colspan="2" |Harmonic (prime ''p'') | |||
!2 | |||
!3 | |||
!5 | |||
!7 | |||
!11 | |||
!13 | |||
!17 | |||
!19 | |||
!23 | |||
!29 | |||
|- | |||
! rowspan="2" |Error | |||
!absolute (c) | |||
| +0.000 | |||
| -0.050 | |||
| +0.115 | |||
| -0.016 | |||
| +0.111 | |||
| -0.051 | |||
| +0.045 | |||
| +0.106 | |||
| +0.059 | |||
| -0.053 | |||
|- | |||
!relative (%) | |||
| +0 | |||
| -21 | |||
| +48 | |||
| -7 | |||
| +46 | |||
| -22 | |||
| +19 | |||
| +45 | |||
| +25 | |||
| -22 | |||
|- | |||
! colspan="2" |Steps | |||
(reduced) | |||
|5040 | |||
(0) | |||
|7988 | |||
(2948) | |||
|11703 | |||
(1623) | |||
|14149 | |||
(4069) | |||
|17436 | |||
(2316) | |||
|18650 | |||
(3530) | |||
|20601 | |||
(441) | |||
|21410 | |||
(1250) | |||
|22799 | |||
(2639) | |||
|24484 | |||
(4324) | |||
|- | |||
! colspan="2" |Contorsion order | |||
for 2.''p'' subgroup | |||
|5040 | |||
|4 | |||
|3 | |||
|1 | |||
|12 | |||
|10 | |||
|63 | |||
|10 | |||
|7 | |||
|4 | |||
|} | |} | ||
5040 is both a superabundant and a highly composite number, meaning its amount of symmetrical chords and subscales increases to a record, and the amount of notes which make up those scales, if stretched end-to-end, also is largest relative to the number's size. | 5040 is both a superabundant and a highly composite number, meaning its amount of symmetrical chords and subscales increases to a record, and the amount of notes which make up those scales, if stretched end-to-end, also is largest relative to the number's size. |