39edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>Osmiorisbendi
**Imported revision 144410053 - Original comment: **
Wikispaces>genewardsmith
**Imported revision 144666037 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:Osmiorisbendi|Osmiorisbendi]] and made on <tt>2010-05-24 22:10:23 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2010-05-25 16:47:34 UTC</tt>.<br>
: The original revision id was <tt>144410053</tt>.<br>
: The original revision id was <tt>144666037</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">&lt;span style="color: #6100f5; font-size: 200%;"&gt;39 tone equal temperament&lt;/span&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">
39EDO, if we take 22/39 as a fifth, can be used in mavilla temperament, and from that point of view seems to have attracted the attention of the Armodue school, an Italian group interested in 16EDO and allied systems. However, its 23/39 fifth, five and three-quarters cents sharp, is in much better tune than the mavilla fifth which like all mavilla fifths is very, very flat--in this case, 25 cents flat. Together with its best third which is the familiar 400 cents of 12 equal, we get a system which tempers out the diesis, 128/125, and the amity comma, 1600000/1594323. We have two choices for a map for 7, but the sharp one works better with the 3 and 5, which adds 64/63 and 126/125 to the list. Tempering out both 128/125 and 64/63 makes 39EDO in some ways allied to 12EDO in supporting augene temperament, but one difference is that 39 has an excellent 11, and adding it to consideration we find 39et tempers out 99/98 and 121/120 also. This better choice for 39et is &lt;39 62 91 110 135|.
 
 
&lt;span style="color: #6100f5; font-size: 200%;"&gt;39 tone equal temperament&lt;/span&gt;


**39-EDO Intervals:**
**39-EDO Intervals:**
Line 80: Line 84:
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1
2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 1 2 2 2 2 1
2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 1 2 2 2 2 1
 
</pre></div>
39-EDO is one of the derivations of Armodue Systems. 39 is the fifthtones of Armodue (16-EDO). 39-EDO is the Extended range of Armodue-Hornbostel (23-EDO) and Extended Pelogic. 39-EDO contains very good representation of the some low-limit harmonics, but all the rest are mid-limit harmonics and some high-limit harmonics. 39-EDO may be cataloged Semi-atonal.</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;39edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;span style="color: #6100f5; font-size: 200%;"&gt;39 tone equal temperament&lt;/span&gt;&lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;39edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;br /&gt;
39EDO, if we take 22/39 as a fifth, can be used in mavilla temperament, and from that point of view seems to have attracted the attention of the Armodue school, an Italian group interested in 16EDO and allied systems. However, its 23/39 fifth, five and three-quarters cents sharp, is in much better tune than the mavilla fifth which like all mavilla fifths is very, very flat--in this case, 25 cents flat. Together with its best third which is the familiar 400 cents of 12 equal, we get a system which tempers out the diesis, 128/125, and the amity comma, 1600000/1594323. We have two choices for a map for 7, but the sharp one works better with the 3 and 5, which adds 64/63 and 126/125 to the list. Tempering out both 128/125 and 64/63 makes 39EDO in some ways allied to 12EDO in supporting augene temperament, but one difference is that 39 has an excellent 11, and adding it to consideration we find 39et tempers out 99/98 and 121/120 also. This better choice for 39et is &amp;lt;39 62 91 110 135|.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;span style="color: #6100f5; font-size: 200%;"&gt;39 tone equal temperament&lt;/span&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;strong&gt;39-EDO Intervals:&lt;/strong&gt;&lt;br /&gt;
&lt;strong&gt;39-EDO Intervals:&lt;/strong&gt;&lt;br /&gt;
Line 705: Line 712:
2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2&lt;br /&gt;
2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2&lt;br /&gt;
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1&lt;br /&gt;
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1&lt;br /&gt;
2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 1 2 2 2 2 1&lt;br /&gt;
2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 1 2 2 2 2 1&lt;/body&gt;&lt;/html&gt;</pre></div>
&lt;br /&gt;
39-EDO is one of the derivations of Armodue Systems. 39 is the fifthtones of Armodue (16-EDO). 39-EDO is the Extended range of Armodue-Hornbostel (23-EDO) and Extended Pelogic. 39-EDO contains very good representation of the some low-limit harmonics, but all the rest are mid-limit harmonics and some high-limit harmonics. 39-EDO may be cataloged Semi-atonal.&lt;/body&gt;&lt;/html&gt;</pre></div>

Revision as of 16:47, 25 May 2010

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author genewardsmith and made on 2010-05-25 16:47:34 UTC.
The original revision id was 144666037.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

39EDO, if we take 22/39 as a fifth, can be used in mavilla temperament, and from that point of view seems to have attracted the attention of the Armodue school, an Italian group interested in 16EDO and allied systems. However, its 23/39 fifth, five and three-quarters cents sharp, is in much better tune than the mavilla fifth which like all mavilla fifths is very, very flat--in this case, 25 cents flat. Together with its best third which is the familiar 400 cents of 12 equal, we get a system which tempers out the diesis, 128/125, and the amity comma, 1600000/1594323. We have two choices for a map for 7, but the sharp one works better with the 3 and 5, which adds 64/63 and 126/125 to the list. Tempering out both 128/125 and 64/63 makes 39EDO in some ways allied to 12EDO in supporting augene temperament, but one difference is that 39 has an excellent 11, and adding it to consideration we find 39et tempers out 99/98 and 121/120 also. This better choice for 39et is <39 62 91 110 135|.


<span style="color: #6100f5; font-size: 200%;">39 tone equal temperament</span>

**39-EDO Intervals:**
|| **NOMENCLATURE** ||
|| **|** = Semisharp
**t** = Semiflat ||

|| **DEGREE** || **NOTE** || **CENTS** || **Nearest JI** || **Cents** || **Error** ||
|| **0** || **1** || **0** || **1/1** || **0** || **None** ||
|| 1 || 1| || 30.7692 || 58/57 || 30.1092 || +0.66 ||
|| 2 || 1# || 61.5385 || 28/27 || 62.9609 || - 1.4224 ||
|| 3 || 2b || 92.3077 || 256/243 || 90.225 || +2.0827 ||
|| 4 || 2t || 123.0769 || 29/27 || 123.7122 || -0.6353 ||
|| 5 || 2 || 153.8462 || 82/75 || 154.48 || -0.6338 ||
|| 6 || 2| || 184.6154 || 10/9 || 182.4037 || +2.2117 ||
|| **7·** || **2#** || **215.3846** || **17/15** || **216.6867** || **-1.3021** ||
|| 8 || 3b || 246.1538 || 15/13 || 247.7411 || -1.5873 ||
|| 9 || 3t || 276.9231 || 27/23 || 277.5907 || -0.6676 ||
|| 10 || 3 || 307.6923 || 49/41 || 308.5894 || -0.8971 ||
|| 11 || 3| || 338.4615 || 45/37 || 338.8797 || -0.4182 ||
|| **12·** || **3#** || **369.2308** || **26/21** || **369.7468** || **-0.516** ||
|| 13 || 4b || 400 || 34/27 || 399.0904 || +0.9096 ||
|| 14 || 4t || 430.7692 || 9/7 || 435.0841 || -4.3149 ||
|| 15 || 4 || 461.5385 || 43/33 || 458.2448 || +3.2937 ||
|| 16 || 4| (5t) || 492.3077 || 93/70 || 491.851 || +0.4567 ||
|| **17·** || **5** || **523.0769** || **23/17** || **523.3189** || **-0.242** ||
|| 18 || 5| || 553.8462 || 11/8 || 551.3179 || +2.5283 ||
|| 19 || 5# || 584.6154 || 7/5 || 582.5122 || +2.1032 ||
|| 20 || 6b || 615.3846 || 10/7 || 617.4878 || -2.1032 ||
|| 21 || 6t || 646.1538 || 16/11 || 648.6821 || -2.5283 ||
|| **22·** || **6** || **676.9231** || **34/23** || **676.6811** || **+0.242** ||
|| 23 || 6| || 707.6923 || 140/93 || 708.149 || -0.4567 ||
|| 24 || 6# || 738.4615 || 66/43 || 741.7552 || -3.2937 ||
|| 25 || 7b || 769.2308 || 14/9 || 764.9159 || +4.3149 ||
|| 26 || 7t || 800 || 27/17 || 800.9096 || -0.9096 ||
|| **27·** || **7 (A)** || **830.7692** || **21/13** || **830.2532** || **+0.516** ||
|| 28 || 7| || 861.5385 || 74/45 || 861.1203 || +0.4182 ||
|| 29 || 7# || 892.3077 || 82/49 || 891.4106 || +0.8971 ||
|| 30 || 8b || 923.0769 || 46/27 || 922.4093 || +0.6676 ||
|| 31 || 8t || 953.8462 || 26/15 || 952.2589 || +1.5873 ||
|| **32·** || **8** || **984.6154** || **30/17** || **983.3133** || **+1.3021** ||
|| 33 || 8| || 1015.3846 || 9/5 || 1017.5963 || -2.2117 ||
|| 34 || 8# || 1046.1538 || 75/41 || 1045.52 || +0.6338 ||
|| 35 || 9b || 1076.9231 || 54/29 || 1076.2878 || +0.6353 ||
|| 36 || 9t || 1107.6923 || 243/128 || 1109.775 || -2.0827 ||
|| 37 || 9 || 1138.4615 || 27/14 || 1137.0391 || +1.4224 ||
|| 38 || 9| (1t) || 1169.2308 || 57/29 || 1169.8908 || -0.66 ||
|| **39··(or 0)** || **1** || **1200** || **2/1** || **1200** || **None** ||


**39 tone equal modes:**

15 15 9
14 14 11
13 13 13
11 11 11 6
10 10 10 9
9 9 9 9 3
8 8 8 8 7
7 7 7 7 7 4
5 5 7 5 5 5 7
5 5 5 7 5 5 7
5 5 5 7 5 7 5
5 5 5 5 5 5 5 4
5 5 5 2 5 5 5 5 2
5 5 2 5 5 5 5 2 5
5 5 3 5 5 3 5 5 3
5 4 4 5 4 4 5 4 4
4 4 4 4 4 4 4 4 4 3
3 3 3 3 3 3 3 3 3 3 3 3 3
3 3 3 2 3 3 3 3 2 3 3 3 3 2
2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1
2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 1 2 2 2 2 1

Original HTML content:

<html><head><title>39edo</title></head><body><br />
39EDO, if we take 22/39 as a fifth, can be used in mavilla temperament, and from that point of view seems to have attracted the attention of the Armodue school, an Italian group interested in 16EDO and allied systems. However, its 23/39 fifth, five and three-quarters cents sharp, is in much better tune than the mavilla fifth which like all mavilla fifths is very, very flat--in this case, 25 cents flat. Together with its best third which is the familiar 400 cents of 12 equal, we get a system which tempers out the diesis, 128/125, and the amity comma, 1600000/1594323. We have two choices for a map for 7, but the sharp one works better with the 3 and 5, which adds 64/63 and 126/125 to the list. Tempering out both 128/125 and 64/63 makes 39EDO in some ways allied to 12EDO in supporting augene temperament, but one difference is that 39 has an excellent 11, and adding it to consideration we find 39et tempers out 99/98 and 121/120 also. This better choice for 39et is &lt;39 62 91 110 135|.<br />
<br />
<br />
<span style="color: #6100f5; font-size: 200%;">39 tone equal temperament</span><br />
<br />
<strong>39-EDO Intervals:</strong><br />


<table class="wiki_table">
    <tr>
        <td><strong>NOMENCLATURE</strong><br />
</td>
    </tr>
    <tr>
        <td><strong>|</strong> = Semisharp<br />
<strong>t</strong> = Semiflat<br />
</td>
    </tr>
</table>

<br />


<table class="wiki_table">
    <tr>
        <td><strong>DEGREE</strong><br />
</td>
        <td><strong>NOTE</strong><br />
</td>
        <td><strong>CENTS</strong><br />
</td>
        <td><strong>Nearest JI</strong><br />
</td>
        <td><strong>Cents</strong><br />
</td>
        <td><strong>Error</strong><br />
</td>
    </tr>
    <tr>
        <td>0<br />
</td>
        <td><strong>1</strong><br />
</td>
        <td>0<br />
</td>
        <td><strong>1/1</strong><br />
</td>
        <td>0<br />
</td>
        <td><strong>None</strong><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>1|<br />
</td>
        <td>30.7692<br />
</td>
        <td>58/57<br />
</td>
        <td>30.1092<br />
</td>
        <td>+0.66<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>1#<br />
</td>
        <td>61.5385<br />
</td>
        <td>28/27<br />
</td>
        <td>62.9609<br />
</td>
        <td>- 1.4224<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>2b<br />
</td>
        <td>92.3077<br />
</td>
        <td>256/243<br />
</td>
        <td>90.225<br />
</td>
        <td>+2.0827<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>2t<br />
</td>
        <td>123.0769<br />
</td>
        <td>29/27<br />
</td>
        <td>123.7122<br />
</td>
        <td>-0.6353<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>2<br />
</td>
        <td>153.8462<br />
</td>
        <td>82/75<br />
</td>
        <td>154.48<br />
</td>
        <td>-0.6338<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>2|<br />
</td>
        <td>184.6154<br />
</td>
        <td>10/9<br />
</td>
        <td>182.4037<br />
</td>
        <td>+2.2117<br />
</td>
    </tr>
    <tr>
        <td><strong>7·</strong><br />
</td>
        <td><strong>2#</strong><br />
</td>
        <td><strong>215.3846</strong><br />
</td>
        <td><strong>17/15</strong><br />
</td>
        <td><strong>216.6867</strong><br />
</td>
        <td><strong>-1.3021</strong><br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>3b<br />
</td>
        <td>246.1538<br />
</td>
        <td>15/13<br />
</td>
        <td>247.7411<br />
</td>
        <td>-1.5873<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>3t<br />
</td>
        <td>276.9231<br />
</td>
        <td>27/23<br />
</td>
        <td>277.5907<br />
</td>
        <td>-0.6676<br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td>3<br />
</td>
        <td>307.6923<br />
</td>
        <td>49/41<br />
</td>
        <td>308.5894<br />
</td>
        <td>-0.8971<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td>3|<br />
</td>
        <td>338.4615<br />
</td>
        <td>45/37<br />
</td>
        <td>338.8797<br />
</td>
        <td>-0.4182<br />
</td>
    </tr>
    <tr>
        <td><strong>12·</strong><br />
</td>
        <td><strong>3#</strong><br />
</td>
        <td><strong>369.2308</strong><br />
</td>
        <td><strong>26/21</strong><br />
</td>
        <td><strong>369.7468</strong><br />
</td>
        <td><strong>-0.516</strong><br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td>4b<br />
</td>
        <td>400<br />
</td>
        <td>34/27<br />
</td>
        <td>399.0904<br />
</td>
        <td>+0.9096<br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td>4t<br />
</td>
        <td>430.7692<br />
</td>
        <td>9/7<br />
</td>
        <td>435.0841<br />
</td>
        <td>-4.3149<br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td>4<br />
</td>
        <td>461.5385<br />
</td>
        <td>43/33<br />
</td>
        <td>458.2448<br />
</td>
        <td>+3.2937<br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td>4| (5t)<br />
</td>
        <td>492.3077<br />
</td>
        <td>93/70<br />
</td>
        <td>491.851<br />
</td>
        <td>+0.4567<br />
</td>
    </tr>
    <tr>
        <td><strong>17·</strong><br />
</td>
        <td><strong>5</strong><br />
</td>
        <td><strong>523.0769</strong><br />
</td>
        <td><strong>23/17</strong><br />
</td>
        <td><strong>523.3189</strong><br />
</td>
        <td><strong>-0.242</strong><br />
</td>
    </tr>
    <tr>
        <td>18<br />
</td>
        <td>5|<br />
</td>
        <td>553.8462<br />
</td>
        <td>11/8<br />
</td>
        <td>551.3179<br />
</td>
        <td>+2.5283<br />
</td>
    </tr>
    <tr>
        <td>19<br />
</td>
        <td>5#<br />
</td>
        <td>584.6154<br />
</td>
        <td>7/5<br />
</td>
        <td>582.5122<br />
</td>
        <td>+2.1032<br />
</td>
    </tr>
    <tr>
        <td>20<br />
</td>
        <td>6b<br />
</td>
        <td>615.3846<br />
</td>
        <td>10/7<br />
</td>
        <td>617.4878<br />
</td>
        <td>-2.1032<br />
</td>
    </tr>
    <tr>
        <td>21<br />
</td>
        <td>6t<br />
</td>
        <td>646.1538<br />
</td>
        <td>16/11<br />
</td>
        <td>648.6821<br />
</td>
        <td>-2.5283<br />
</td>
    </tr>
    <tr>
        <td><strong>22·</strong><br />
</td>
        <td><strong>6</strong><br />
</td>
        <td><strong>676.9231</strong><br />
</td>
        <td><strong>34/23</strong><br />
</td>
        <td><strong>676.6811</strong><br />
</td>
        <td><strong>+0.242</strong><br />
</td>
    </tr>
    <tr>
        <td>23<br />
</td>
        <td>6|<br />
</td>
        <td>707.6923<br />
</td>
        <td>140/93<br />
</td>
        <td>708.149<br />
</td>
        <td>-0.4567<br />
</td>
    </tr>
    <tr>
        <td>24<br />
</td>
        <td>6#<br />
</td>
        <td>738.4615<br />
</td>
        <td>66/43<br />
</td>
        <td>741.7552<br />
</td>
        <td>-3.2937<br />
</td>
    </tr>
    <tr>
        <td>25<br />
</td>
        <td>7b<br />
</td>
        <td>769.2308<br />
</td>
        <td>14/9<br />
</td>
        <td>764.9159<br />
</td>
        <td>+4.3149<br />
</td>
    </tr>
    <tr>
        <td>26<br />
</td>
        <td>7t<br />
</td>
        <td>800<br />
</td>
        <td>27/17<br />
</td>
        <td>800.9096<br />
</td>
        <td>-0.9096<br />
</td>
    </tr>
    <tr>
        <td><strong>27·</strong><br />
</td>
        <td><strong>7 (A)</strong><br />
</td>
        <td><strong>830.7692</strong><br />
</td>
        <td><strong>21/13</strong><br />
</td>
        <td><strong>830.2532</strong><br />
</td>
        <td><strong>+0.516</strong><br />
</td>
    </tr>
    <tr>
        <td>28<br />
</td>
        <td>7|<br />
</td>
        <td>861.5385<br />
</td>
        <td>74/45<br />
</td>
        <td>861.1203<br />
</td>
        <td>+0.4182<br />
</td>
    </tr>
    <tr>
        <td>29<br />
</td>
        <td>7#<br />
</td>
        <td>892.3077<br />
</td>
        <td>82/49<br />
</td>
        <td>891.4106<br />
</td>
        <td>+0.8971<br />
</td>
    </tr>
    <tr>
        <td>30<br />
</td>
        <td>8b<br />
</td>
        <td>923.0769<br />
</td>
        <td>46/27<br />
</td>
        <td>922.4093<br />
</td>
        <td>+0.6676<br />
</td>
    </tr>
    <tr>
        <td>31<br />
</td>
        <td>8t<br />
</td>
        <td>953.8462<br />
</td>
        <td>26/15<br />
</td>
        <td>952.2589<br />
</td>
        <td>+1.5873<br />
</td>
    </tr>
    <tr>
        <td><strong>32·</strong><br />
</td>
        <td><strong>8</strong><br />
</td>
        <td><strong>984.6154</strong><br />
</td>
        <td><strong>30/17</strong><br />
</td>
        <td><strong>983.3133</strong><br />
</td>
        <td><strong>+1.3021</strong><br />
</td>
    </tr>
    <tr>
        <td>33<br />
</td>
        <td>8|<br />
</td>
        <td>1015.3846<br />
</td>
        <td>9/5<br />
</td>
        <td>1017.5963<br />
</td>
        <td>-2.2117<br />
</td>
    </tr>
    <tr>
        <td>34<br />
</td>
        <td>8#<br />
</td>
        <td>1046.1538<br />
</td>
        <td>75/41<br />
</td>
        <td>1045.52<br />
</td>
        <td>+0.6338<br />
</td>
    </tr>
    <tr>
        <td>35<br />
</td>
        <td>9b<br />
</td>
        <td>1076.9231<br />
</td>
        <td>54/29<br />
</td>
        <td>1076.2878<br />
</td>
        <td>+0.6353<br />
</td>
    </tr>
    <tr>
        <td>36<br />
</td>
        <td>9t<br />
</td>
        <td>1107.6923<br />
</td>
        <td>243/128<br />
</td>
        <td>1109.775<br />
</td>
        <td>-2.0827<br />
</td>
    </tr>
    <tr>
        <td>37<br />
</td>
        <td>9<br />
</td>
        <td>1138.4615<br />
</td>
        <td>27/14<br />
</td>
        <td>1137.0391<br />
</td>
        <td>+1.4224<br />
</td>
    </tr>
    <tr>
        <td>38<br />
</td>
        <td>9| (1t)<br />
</td>
        <td>1169.2308<br />
</td>
        <td>57/29<br />
</td>
        <td>1169.8908<br />
</td>
        <td>-0.66<br />
</td>
    </tr>
    <tr>
        <td><strong>39··(or 0)</strong><br />
</td>
        <td><strong>1</strong><br />
</td>
        <td><strong>1200</strong><br />
</td>
        <td><strong>2/1</strong><br />
</td>
        <td><strong>1200</strong><br />
</td>
        <td><strong>None</strong><br />
</td>
    </tr>
</table>

<br />
<br />
<strong>39 tone equal modes:</strong><br />
<br />
15 15 9<br />
14 14 11<br />
13 13 13<br />
11 11 11 6<br />
10 10 10 9<br />
9 9 9 9 3<br />
8 8 8 8 7<br />
7 7 7 7 7 4<br />
5 5 7 5 5 5 7<br />
5 5 5 7 5 5 7<br />
5 5 5 7 5 7 5<br />
5 5 5 5 5 5 5 4<br />
5 5 5 2 5 5 5 5 2<br />
5 5 2 5 5 5 5 2 5<br />
5 5 3 5 5 3 5 5 3<br />
5 4 4 5 4 4 5 4 4<br />
4 4 4 4 4 4 4 4 4 3<br />
3 3 3 3 3 3 3 3 3 3 3 3 3<br />
3 3 3 2 3 3 3 3 2 3 3 3 3 2<br />
2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2<br />
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1<br />
2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 1 2 2 2 2 1</body></html>