37edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>Andrew_Heathwaite
**Imported revision 172988221 - Original comment: **
 
Wikispaces>Andrew_Heathwaite
**Imported revision 204112484 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:Andrew_Heathwaite|Andrew_Heathwaite]] and made on <tt>2010-10-23 12:45:59 UTC</tt>.<br>
: This revision was by author [[User:Andrew_Heathwaite|Andrew_Heathwaite]] and made on <tt>2011-02-22 16:14:17 UTC</tt>.<br>
: The original revision id was <tt>172988221</tt>.<br>
: The original revision id was <tt>204112484</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">37edo is the scale derived from dividing the octave into 37 microtonal steps of approximately 32.43 cents each. It offers close approximations to [[OverToneSeries|harmonics]] 5, 7, 11, and 13:
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">37edo is the scale derived from dividing the octave into 37 equal steps of approximately 32.43 cents each. It offers close approximations to [[OverToneSeries|harmonics]] 5, 7, 11, and 13:


12\37 = 389.2 cents
12\37 = 389.2 cents
Line 28: Line 28:
"major third" = 14\37 = 454.1 cents
"major third" = 14\37 = 454.1 cents


37edo has great potential as a xenharmonic system, which high-prime chords such as 8:10:11:13:14 with no perfect fifths available for common terrestrial progressions.</pre></div>
37edo has great potential as a xenharmonic system, which high-prime chords such as 8:10:11:13:14 with no perfect fifths available for common terrestrial progressions.
 
==Intervals==
 
|| degrees of 37edo || cents value ||
|| 0 || 0.00 ||
|| 1 || 32.43 ||
|| 2 || 64.86 ||
|| 3 || 97.30 ||
|| 4 || 129.73 ||
|| 5 || 162.16 ||
|| 6 || 194.59 ||
|| 7 || 227.03 ||
|| 8 || 259.46 ||
|| 9 || 291.89 ||
|| 10 || 324.32 ||
|| 11 || 356.76 ||
|| 12 || 389.19 ||
|| 13 || 421.62 ||
|| 14 || 454.05 ||
|| 15 || 486.49 ||
|| 16 || 518.92 ||
|| 17 || 551.35 ||
|| 18 || 583.78 ||
|| 19 || 616.22 ||
|| 20 || 648.65 ||
|| 21 || 681.08 ||
|| 22 || 713.51 ||
|| 23 || 745.95 ||
|| 24 || 778.38 ||
|| 25 || 810.81 ||
|| 26 || 843.24 ||
|| 27 || 875.68 ||
|| 28 || 908.11 ||
|| 29 || 940.54 ||
|| 30 || 972.97 ||
|| 31 || 1005.41 ||
|| 32 || 1037.84 ||
|| 33 || 1070.27 ||
|| 34 || 1102.70 ||
|| 35 || 1135.14 ||
|| 36 || 1167.57 ||</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;37edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;37edo is the scale derived from dividing the octave into 37 microtonal steps of approximately 32.43 cents each. It offers close approximations to &lt;a class="wiki_link" href="/OverToneSeries"&gt;harmonics&lt;/a&gt; 5, 7, 11, and 13:&lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;37edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;37edo is the scale derived from dividing the octave into 37 equal steps of approximately 32.43 cents each. It offers close approximations to &lt;a class="wiki_link" href="/OverToneSeries"&gt;harmonics&lt;/a&gt; 5, 7, 11, and 13:&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
12\37 = 389.2 cents&lt;br /&gt;
12\37 = 389.2 cents&lt;br /&gt;
Line 52: Line 93:
&amp;quot;major third&amp;quot; = 14\37 = 454.1 cents&lt;br /&gt;
&amp;quot;major third&amp;quot; = 14\37 = 454.1 cents&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
37edo has great potential as a xenharmonic system, which high-prime chords such as 8:10:11:13:14 with no perfect fifths available for common terrestrial progressions.&lt;/body&gt;&lt;/html&gt;</pre></div>
37edo has great potential as a xenharmonic system, which high-prime chords such as 8:10:11:13:14 with no perfect fifths available for common terrestrial progressions.&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc0"&gt;&lt;a name="x-Intervals"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Intervals&lt;/h2&gt;
&lt;br /&gt;
 
 
&lt;table class="wiki_table"&gt;
    &lt;tr&gt;
        &lt;td&gt;degrees of 37edo&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;cents value&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0.00&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;32.43&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;64.86&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;97.30&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;129.73&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;162.16&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;194.59&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;227.03&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;259.46&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;291.89&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;324.32&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;356.76&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;389.19&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;421.62&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;454.05&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;486.49&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;16&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;518.92&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;551.35&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;18&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;583.78&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;19&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;616.22&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;20&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;648.65&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;681.08&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;22&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;713.51&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;745.95&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;24&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;778.38&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;810.81&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;843.24&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;27&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;875.68&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;28&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;908.11&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;29&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;940.54&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;30&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;972.97&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;31&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1005.41&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;32&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1037.84&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;33&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1070.27&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;34&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1102.70&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;35&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1135.14&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;36&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1167.57&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;
 
&lt;/body&gt;&lt;/html&gt;</pre></div>

Revision as of 16:14, 22 February 2011

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author Andrew_Heathwaite and made on 2011-02-22 16:14:17 UTC.
The original revision id was 204112484.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

37edo is the scale derived from dividing the octave into 37 equal steps of approximately 32.43 cents each. It offers close approximations to [[OverToneSeries|harmonics]] 5, 7, 11, and 13:

12\37 = 389.2 cents
30\37 = 973.0 cents
17\37 = 551.4 cents
26\37 = 843.2 cents

However, the just [[perfect fifth]] of frequency ratio 3:2 is not well-approximated, and falls between two intervals in 37edo:

21\37 = 681.1 cents
22\37 = 713.5 cents

37edo thus has the distinction of being the first [[edo]] which occupies two spaces on the syntonic spectrum.

21\37 generates an anti-diatonic, or mavila, scale: 5 5 6 5 5 5 6
"minor third" = 10\37 = 324.3 cents
"major third" = 11\37 = 356.8 cents

22\37 generates an extreme superpythagorean scale: 7 7 1 7 7 7 1
"minor third" = 8\37 = 259.5 cents
"major third" = 14\37 = 454.1 cents

37edo has great potential as a xenharmonic system, which high-prime chords such as 8:10:11:13:14 with no perfect fifths available for common terrestrial progressions.

==Intervals== 

|| degrees of 37edo || cents value ||
|| 0 || 0.00 ||
|| 1 || 32.43 ||
|| 2 || 64.86 ||
|| 3 || 97.30 ||
|| 4 || 129.73 ||
|| 5 || 162.16 ||
|| 6 || 194.59 ||
|| 7 || 227.03 ||
|| 8 || 259.46 ||
|| 9 || 291.89 ||
|| 10 || 324.32 ||
|| 11 || 356.76 ||
|| 12 || 389.19 ||
|| 13 || 421.62 ||
|| 14 || 454.05 ||
|| 15 || 486.49 ||
|| 16 || 518.92 ||
|| 17 || 551.35 ||
|| 18 || 583.78 ||
|| 19 || 616.22 ||
|| 20 || 648.65 ||
|| 21 || 681.08 ||
|| 22 || 713.51 ||
|| 23 || 745.95 ||
|| 24 || 778.38 ||
|| 25 || 810.81 ||
|| 26 || 843.24 ||
|| 27 || 875.68 ||
|| 28 || 908.11 ||
|| 29 || 940.54 ||
|| 30 || 972.97 ||
|| 31 || 1005.41 ||
|| 32 || 1037.84 ||
|| 33 || 1070.27 ||
|| 34 || 1102.70 ||
|| 35 || 1135.14 ||
|| 36 || 1167.57 ||

Original HTML content:

<html><head><title>37edo</title></head><body>37edo is the scale derived from dividing the octave into 37 equal steps of approximately 32.43 cents each. It offers close approximations to <a class="wiki_link" href="/OverToneSeries">harmonics</a> 5, 7, 11, and 13:<br />
<br />
12\37 = 389.2 cents<br />
30\37 = 973.0 cents<br />
17\37 = 551.4 cents<br />
26\37 = 843.2 cents<br />
<br />
However, the just <a class="wiki_link" href="/perfect%20fifth">perfect fifth</a> of frequency ratio 3:2 is not well-approximated, and falls between two intervals in 37edo:<br />
<br />
21\37 = 681.1 cents<br />
22\37 = 713.5 cents<br />
<br />
37edo thus has the distinction of being the first <a class="wiki_link" href="/edo">edo</a> which occupies two spaces on the syntonic spectrum.<br />
<br />
21\37 generates an anti-diatonic, or mavila, scale: 5 5 6 5 5 5 6<br />
&quot;minor third&quot; = 10\37 = 324.3 cents<br />
&quot;major third&quot; = 11\37 = 356.8 cents<br />
<br />
22\37 generates an extreme superpythagorean scale: 7 7 1 7 7 7 1<br />
&quot;minor third&quot; = 8\37 = 259.5 cents<br />
&quot;major third&quot; = 14\37 = 454.1 cents<br />
<br />
37edo has great potential as a xenharmonic system, which high-prime chords such as 8:10:11:13:14 with no perfect fifths available for common terrestrial progressions.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:0:&lt;h2&gt; --><h2 id="toc0"><a name="x-Intervals"></a><!-- ws:end:WikiTextHeadingRule:0 -->Intervals</h2>
 <br />


<table class="wiki_table">
    <tr>
        <td>degrees of 37edo<br />
</td>
        <td>cents value<br />
</td>
    </tr>
    <tr>
        <td>0<br />
</td>
        <td>0.00<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>32.43<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>64.86<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>97.30<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>129.73<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>162.16<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>194.59<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>227.03<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>259.46<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>291.89<br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td>324.32<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td>356.76<br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td>389.19<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td>421.62<br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td>454.05<br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td>486.49<br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td>518.92<br />
</td>
    </tr>
    <tr>
        <td>17<br />
</td>
        <td>551.35<br />
</td>
    </tr>
    <tr>
        <td>18<br />
</td>
        <td>583.78<br />
</td>
    </tr>
    <tr>
        <td>19<br />
</td>
        <td>616.22<br />
</td>
    </tr>
    <tr>
        <td>20<br />
</td>
        <td>648.65<br />
</td>
    </tr>
    <tr>
        <td>21<br />
</td>
        <td>681.08<br />
</td>
    </tr>
    <tr>
        <td>22<br />
</td>
        <td>713.51<br />
</td>
    </tr>
    <tr>
        <td>23<br />
</td>
        <td>745.95<br />
</td>
    </tr>
    <tr>
        <td>24<br />
</td>
        <td>778.38<br />
</td>
    </tr>
    <tr>
        <td>25<br />
</td>
        <td>810.81<br />
</td>
    </tr>
    <tr>
        <td>26<br />
</td>
        <td>843.24<br />
</td>
    </tr>
    <tr>
        <td>27<br />
</td>
        <td>875.68<br />
</td>
    </tr>
    <tr>
        <td>28<br />
</td>
        <td>908.11<br />
</td>
    </tr>
    <tr>
        <td>29<br />
</td>
        <td>940.54<br />
</td>
    </tr>
    <tr>
        <td>30<br />
</td>
        <td>972.97<br />
</td>
    </tr>
    <tr>
        <td>31<br />
</td>
        <td>1005.41<br />
</td>
    </tr>
    <tr>
        <td>32<br />
</td>
        <td>1037.84<br />
</td>
    </tr>
    <tr>
        <td>33<br />
</td>
        <td>1070.27<br />
</td>
    </tr>
    <tr>
        <td>34<br />
</td>
        <td>1102.70<br />
</td>
    </tr>
    <tr>
        <td>35<br />
</td>
        <td>1135.14<br />
</td>
    </tr>
    <tr>
        <td>36<br />
</td>
        <td>1167.57<br />
</td>
    </tr>
</table>

</body></html>