37edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>Kosmorsky
**Imported revision 257308630 - Original comment: **
Wikispaces>Andrew_Heathwaite
**Imported revision 284894104 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:Kosmorsky|Kosmorsky]] and made on <tt>2011-09-22 22:23:35 UTC</tt>.<br>
: This revision was by author [[User:Andrew_Heathwaite|Andrew_Heathwaite]] and made on <tt>2011-12-12 02:28:20 UTC</tt>.<br>
: The original revision id was <tt>257308630</tt>.<br>
: The original revision id was <tt>284894104</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 16: Line 16:


=Subgroups=  
=Subgroups=  
37edo offers close approximations to [[OverToneSeries|harmonics]] 5, 7, 11, and 13:
37edo offers close approximations to [[OverToneSeries|harmonics]] 5, 7, 11, and 13 [and a usable approximation of 9 as well].


12\37 = 389.2 cents
12\37 = 389.2 cents
Line 22: Line 22:
17\37 = 551.4 cents
17\37 = 551.4 cents
26\37 = 843.2 cents
26\37 = 843.2 cents
[6\37edo = 194.6 cents]


This means 37 is quite accurate on the 2.5.7.11.13 subgroup, where it shares the same tuning as 111et. In fact, on the larger [[k*N subgroups|3*37 subgroup]] 2.27.5.7.11.13.51.57 subgroup not only shares the same tuning as 19-limit 111et, it tempers out the same commas.
This means 37 is quite accurate on the 2.5.7.11.13 subgroup, where it shares the same tuning as 111et. In fact, on the larger [[k*N subgroups|3*37 subgroup]] 2.27.5.7.11.13.51.57 subgroup not only shares the same tuning as 19-limit 111et, it tempers out the same commas.
Line 28: Line 29:
The just [[perfect fifth]] of frequency ratio 3:2 is not well-approximated, and falls between two intervals in 37edo:
The just [[perfect fifth]] of frequency ratio 3:2 is not well-approximated, and falls between two intervals in 37edo:


21\37 = 681.1 cents
The flat fifth is 21\37 = 681.1 cents
22\37 = 713.5 cents
The sharp fifth is 22\37 = 713.5 cents


21\37 generates an anti-diatonic, or mavila, scale: 5 5 6 5 5 5 6
21\37 generates an anti-diatonic, or mavila, scale: 5 5 6 5 5 5 6
Line 38: Line 39:
"minor third" = 8\37 = 259.5 cents
"minor third" = 8\37 = 259.5 cents
"major third" = 14\37 = 454.1 cents
"major third" = 14\37 = 454.1 cents
If the minor third of 259.5 cents is mapped to 7/6, this superpythagorean scale can be thought of as a variant of [[The Biosphere|Biome]] temperament.
If the minor third of 259.5 cents is mapped to 7/6, this superpythagorean scale can be thought of as a variant of [[The Biosphere|Biome]] temperament.


37edo has great potential as a xenharmonic system, which high-prime chords such as 8:10:11:13:14 with no perfect fifths available for common terrestrial progressions.
Interestingly, the "major thirds" of both systems are not 12\37 = 389.2¢, the closest approximation to 5/4 available in 37edo.
 
37edo has great potential as a near-just xenharmonic system, with high-prime chords such as 8:10:11:13:14 with no perfect fifths available for common terrestrial progressions. The 9/8 approximation is usable but introduces error. One may choose to treat either of the intervals close to 3/2 as 3/2, introducing additional approximations with considerable error (see interval table below).


=Intervals=  
=Intervals=  
|| degrees of 37edo || cents value ||
||~ Degrees of 37edo ||~ Cents Value ||~ Approximate Ratios
|| 0 || 0.00 ||
of 2.5.7.11.13.27 subgroup ||~ Ratios of 3 with
|| 1 || 32.43 ||
a sharp 3/2 ||~ Ratios of 3 with
|| 2 || 64.86 ||
a flat 3/2 ||~ Ratios of 9 with
|| 3 || 97.30 ||
194.59¢ 9/8 ||
|| 4 || 129.73 ||
|| 0 || 0.00 || 1/1 ||  ||  ||  ||
|| 5 || 162.16 ||
|| 1 || 32.43 ||  ||  ||  ||  ||
|| 6 || 194.59 ||
|| 2 || 64.86 || 28/27, 27/26 ||  ||  ||  ||
|| 7 || 227.03 ||
|| 3 || 97.30 ||  ||  ||  ||  ||
|| 8 || 259.46 ||
|| 4 || 129.73 || 14/13 || 13/12 || 12/11 ||  ||
|| 9 || 291.89 ||
|| 5 || 162.16 || 11/10 || 12/11 || 13/12 ||  ||
|| 10 || 324.32 ||
|| 6 || 194.59 ||  ||  ||  || 9/8, 10/9 ||
|| 11 || 356.76 ||
|| 7 || 227.03 || 8/7 ||  ||  ||  ||
|| 12 || 389.19 ||
|| 8 || 259.46 ||  || 7/6 ||  ||  ||
|| 13 || 421.62 ||
|| 9 || 291.89 || 13/11, 32/27 ||  || 6/5, 7/6 ||  ||
|| 14 || 454.05 ||
|| 10 || 324.32 ||  || 6/5 ||  ||  ||
|| 15 || 486.49 ||
|| 11 || 356.76 || 16/13, 27/22 ||  ||  || 11/9 ||
|| 16 || 518.92 ||
|| 12 || 389.19 || 5/4 ||  ||  ||  ||
|| 17 || 551.35 ||
|| 13 || 421.62 || 14/11 ||  ||  || 9/7 ||
|| 18 || 583.78 ||
|| 14 || 454.05 || 13/10 ||  ||  ||  ||
|| 19 || 616.22 ||
|| 15 || 486.49 ||  || 4/3 ||  ||  ||
|| 20 || 648.65 ||
|| 16 || 518.92 || 27/20 ||  || 4/3 ||  ||
|| 21 || 681.08 ||
|| 17 || 551.35 || 11/8 ||  ||  || 18/13 ||
|| 22 || 713.51 ||
|| 18 || 583.78 || 7/5 ||  ||  ||  ||
|| 23 || 745.95 ||
|| 19 || 616.22 || 10/7 ||  ||  ||  ||
|| 24 || 778.38 ||
|| 20 || 648.65 || 16/11 ||  ||  || 13/9 ||
|| 25 || 810.81 ||
|| 21 || 681.08 || 40/27 ||  || 3/2 ||  ||
|| 26 || 843.24 ||
|| 22 || 713.51 ||  || 3/2 ||  ||  ||
|| 27 || 875.68 ||
|| 23 || 745.95 || 20/13 ||  ||  ||  ||
|| 28 || 908.11 ||
|| 24 || 778.38 || 11/7 ||  ||  || 14/9 ||
|| 29 || 940.54 ||
|| 25 || 810.81 || 8/5 ||  ||  ||  ||
|| 30 || 972.97 ||
|| 26 || 843.24 || 13/8, 44/27 ||  ||  || 18/11 ||
|| 31 || 1005.41 ||
|| 27 || 875.68 ||  || 5/3 ||  ||  ||
|| 32 || 1037.84 ||
|| 28 || 908.11 || 22/13, 27/16 ||  || 5/3, 12/7 ||  ||
|| 33 || 1070.27 ||
|| 29 || 940.54 ||  || 12/7 ||  ||  ||
|| 34 || 1102.70 ||
|| 30 || 972.97 || 7/4 ||  ||  ||  ||
|| 35 || 1135.14 ||
|| 31 || 1005.41 ||  ||  ||  || 16/9, 9/5 ||
|| 36 || 1167.57 ||
|| 32 || 1037.84 || 20/11 || 11/6 || 24/13 ||  ||
|| 33 || 1070.27 || 13/7 || 24/13 || 11/6 ||  ||
|| 34 || 1102.70 ||  ||  ||  ||  ||
|| 35 || 1135.14 || 27/14, 52/27 ||  ||  ||  ||
|| 36 || 1167.57 ||  ||  ||  ||  ||


=Scales=  
=Scales=  
Line 99: Line 107:
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Subgroups"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Subgroups&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Subgroups"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Subgroups&lt;/h1&gt;
  37edo offers close approximations to &lt;a class="wiki_link" href="/OverToneSeries"&gt;harmonics&lt;/a&gt; 5, 7, 11, and 13:&lt;br /&gt;
  37edo offers close approximations to &lt;a class="wiki_link" href="/OverToneSeries"&gt;harmonics&lt;/a&gt; 5, 7, 11, and 13 [and a usable approximation of 9 as well].&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
12\37 = 389.2 cents&lt;br /&gt;
12\37 = 389.2 cents&lt;br /&gt;
Line 105: Line 113:
17\37 = 551.4 cents&lt;br /&gt;
17\37 = 551.4 cents&lt;br /&gt;
26\37 = 843.2 cents&lt;br /&gt;
26\37 = 843.2 cents&lt;br /&gt;
[6\37edo = 194.6 cents]&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
This means 37 is quite accurate on the 2.5.7.11.13 subgroup, where it shares the same tuning as 111et. In fact, on the larger &lt;a class="wiki_link" href="/k%2AN%20subgroups"&gt;3*37 subgroup&lt;/a&gt; 2.27.5.7.11.13.51.57 subgroup not only shares the same tuning as 19-limit 111et, it tempers out the same commas.&lt;br /&gt;
This means 37 is quite accurate on the 2.5.7.11.13 subgroup, where it shares the same tuning as 111et. In fact, on the larger &lt;a class="wiki_link" href="/k%2AN%20subgroups"&gt;3*37 subgroup&lt;/a&gt; 2.27.5.7.11.13.51.57 subgroup not only shares the same tuning as 19-limit 111et, it tempers out the same commas.&lt;br /&gt;
Line 111: Line 120:
  The just &lt;a class="wiki_link" href="/perfect%20fifth"&gt;perfect fifth&lt;/a&gt; of frequency ratio 3:2 is not well-approximated, and falls between two intervals in 37edo:&lt;br /&gt;
  The just &lt;a class="wiki_link" href="/perfect%20fifth"&gt;perfect fifth&lt;/a&gt; of frequency ratio 3:2 is not well-approximated, and falls between two intervals in 37edo:&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
21\37 = 681.1 cents&lt;br /&gt;
The flat fifth is 21\37 = 681.1 cents&lt;br /&gt;
22\37 = 713.5 cents&lt;br /&gt;
The sharp fifth is 22\37 = 713.5 cents&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
21\37 generates an anti-diatonic, or mavila, scale: 5 5 6 5 5 5 6&lt;br /&gt;
21\37 generates an anti-diatonic, or mavila, scale: 5 5 6 5 5 5 6&lt;br /&gt;
Line 121: Line 130:
&amp;quot;minor third&amp;quot; = 8\37 = 259.5 cents&lt;br /&gt;
&amp;quot;minor third&amp;quot; = 8\37 = 259.5 cents&lt;br /&gt;
&amp;quot;major third&amp;quot; = 14\37 = 454.1 cents&lt;br /&gt;
&amp;quot;major third&amp;quot; = 14\37 = 454.1 cents&lt;br /&gt;
&lt;br /&gt;
If the minor third of 259.5 cents is mapped to 7/6, this superpythagorean scale can be thought of as a variant of &lt;a class="wiki_link" href="/The%20Biosphere"&gt;Biome&lt;/a&gt; temperament.&lt;br /&gt;
If the minor third of 259.5 cents is mapped to 7/6, this superpythagorean scale can be thought of as a variant of &lt;a class="wiki_link" href="/The%20Biosphere"&gt;Biome&lt;/a&gt; temperament.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
37edo has great potential as a xenharmonic system, which high-prime chords such as 8:10:11:13:14 with no perfect fifths available for common terrestrial progressions.&lt;br /&gt;
Interestingly, the &amp;quot;major thirds&amp;quot; of both systems are not 12\37 = 389.2¢, the closest approximation to 5/4 available in 37edo.&lt;br /&gt;
&lt;br /&gt;
37edo has great potential as a near-just xenharmonic system, with high-prime chords such as 8:10:11:13:14 with no perfect fifths available for common terrestrial progressions. The 9/8 approximation is usable but introduces error. One may choose to treat either of the intervals close to 3/2 as 3/2, introducing additional approximations with considerable error (see interval table below).&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc2"&gt;&lt;a name="Intervals"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;Intervals&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc2"&gt;&lt;a name="Intervals"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;Intervals&lt;/h1&gt;
Line 130: Line 142:
&lt;table class="wiki_table"&gt;
&lt;table class="wiki_table"&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;degrees of 37edo&lt;br /&gt;
         &lt;th&gt;Degrees of 37edo&lt;br /&gt;
&lt;/td&gt;
&lt;/th&gt;
         &lt;td&gt;cents value&lt;br /&gt;
         &lt;th&gt;Cents Value&lt;br /&gt;
&lt;/td&gt;
&lt;/th&gt;
        &lt;th&gt;Approximate Ratios&lt;br /&gt;
of 2.5.7.11.13.27 subgroup&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;Ratios of 3 with&lt;br /&gt;
a sharp 3/2&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;Ratios of 3 with&lt;br /&gt;
a flat 3/2&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;Ratios of 9 with&lt;br /&gt;
194.59¢ 9/8&lt;br /&gt;
&lt;/th&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
Line 139: Line 163:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;0.00&lt;br /&gt;
         &lt;td&gt;0.00&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1/1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 145: Line 177:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;32.43&lt;br /&gt;
         &lt;td&gt;32.43&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 151: Line 191:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;64.86&lt;br /&gt;
         &lt;td&gt;64.86&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;28/27, 27/26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 157: Line 205:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;97.30&lt;br /&gt;
         &lt;td&gt;97.30&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 163: Line 219:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;129.73&lt;br /&gt;
         &lt;td&gt;129.73&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;14/13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13/12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;12/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 169: Line 233:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;162.16&lt;br /&gt;
         &lt;td&gt;162.16&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11/10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;12/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13/12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 175: Line 247:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;194.59&lt;br /&gt;
         &lt;td&gt;194.59&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;9/8, 10/9&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 181: Line 261:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;227.03&lt;br /&gt;
         &lt;td&gt;227.03&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;8/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 187: Line 275:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;259.46&lt;br /&gt;
         &lt;td&gt;259.46&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7/6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 193: Line 289:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;291.89&lt;br /&gt;
         &lt;td&gt;291.89&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13/11, 32/27&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;6/5, 7/6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 199: Line 303:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;324.32&lt;br /&gt;
         &lt;td&gt;324.32&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;6/5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 205: Line 317:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;356.76&lt;br /&gt;
         &lt;td&gt;356.76&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;16/13, 27/22&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11/9&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 211: Line 331:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;389.19&lt;br /&gt;
         &lt;td&gt;389.19&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 217: Line 345:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;421.62&lt;br /&gt;
         &lt;td&gt;421.62&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;9/7&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 223: Line 359:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;454.05&lt;br /&gt;
         &lt;td&gt;454.05&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13/10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 229: Line 373:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;486.49&lt;br /&gt;
         &lt;td&gt;486.49&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;4/3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 235: Line 387:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;518.92&lt;br /&gt;
         &lt;td&gt;518.92&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;27/20&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;4/3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 241: Line 401:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;551.35&lt;br /&gt;
         &lt;td&gt;551.35&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;18/13&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 247: Line 415:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;583.78&lt;br /&gt;
         &lt;td&gt;583.78&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7/5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 253: Line 429:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;616.22&lt;br /&gt;
         &lt;td&gt;616.22&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;10/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 259: Line 443:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;648.65&lt;br /&gt;
         &lt;td&gt;648.65&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;16/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13/9&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 265: Line 457:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;681.08&lt;br /&gt;
         &lt;td&gt;681.08&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;40/27&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;3/2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 271: Line 471:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;713.51&lt;br /&gt;
         &lt;td&gt;713.51&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;3/2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 277: Line 485:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;745.95&lt;br /&gt;
         &lt;td&gt;745.95&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;20/13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 283: Line 499:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;778.38&lt;br /&gt;
         &lt;td&gt;778.38&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;14/9&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 289: Line 513:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;810.81&lt;br /&gt;
         &lt;td&gt;810.81&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;8/5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 295: Line 527:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;843.24&lt;br /&gt;
         &lt;td&gt;843.24&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13/8, 44/27&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;18/11&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 301: Line 541:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;875.68&lt;br /&gt;
         &lt;td&gt;875.68&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5/3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 307: Line 555:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;908.11&lt;br /&gt;
         &lt;td&gt;908.11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;22/13, 27/16&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5/3, 12/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 313: Line 569:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;940.54&lt;br /&gt;
         &lt;td&gt;940.54&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;12/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 319: Line 583:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;972.97&lt;br /&gt;
         &lt;td&gt;972.97&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 325: Line 597:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;1005.41&lt;br /&gt;
         &lt;td&gt;1005.41&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;16/9, 9/5&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 331: Line 611:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;1037.84&lt;br /&gt;
         &lt;td&gt;1037.84&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11/6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;24/13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 337: Line 625:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;1070.27&lt;br /&gt;
         &lt;td&gt;1070.27&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;24/13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11/6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 343: Line 639:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;1102.70&lt;br /&gt;
         &lt;td&gt;1102.70&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 349: Line 653:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;1135.14&lt;br /&gt;
         &lt;td&gt;1135.14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;27/14, 52/27&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 355: Line 667:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;1167.57&lt;br /&gt;
         &lt;td&gt;1167.57&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;

Revision as of 02:28, 12 December 2011

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author Andrew_Heathwaite and made on 2011-12-12 02:28:20 UTC.
The original revision id was 284894104.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

37edo is a scale derived from dividing the octave into 37 equal steps of approximately 32.43 cents each. Using its best (and sharp) fifth, it tempers out 250/243, making it a variant of [[Porcupine family|porcupine temperament]]. Using its alternative flat fifth, it tempers out 16875/16384, making it a negri tuning. It also tempers out 2187/2000, resulting in a temperament where three minor whole tones make up a fifth.

37 edo is also a very accurate equal tuning for Undecimation Temperament, which has a generator of about 519 cents; 2 generators lead to 29/16; 3 generators to 32/13; 6 generators to a 10 cent sharp 6/1; 8 generators to a very accurate 11/1 and 10 generators to 20/1. It has a 7L+2s nonatonic MOS, which in 37-edo scale degrees is 0, 1, 6, 11, 16, 17, 22, 27, 32, making it a variety of Mavila; as well as a 16 note MOS.



[[toc|flat]]
----

=Subgroups= 
37edo offers close approximations to [[OverToneSeries|harmonics]] 5, 7, 11, and 13 [and a usable approximation of 9 as well].

12\37 = 389.2 cents
30\37 = 973.0 cents
17\37 = 551.4 cents
26\37 = 843.2 cents
[6\37edo = 194.6 cents]

This means 37 is quite accurate on the 2.5.7.11.13 subgroup, where it shares the same tuning as 111et. In fact, on the larger [[k*N subgroups|3*37 subgroup]] 2.27.5.7.11.13.51.57 subgroup not only shares the same tuning as 19-limit 111et, it tempers out the same commas.

=The Two Fifths= 
The just [[perfect fifth]] of frequency ratio 3:2 is not well-approximated, and falls between two intervals in 37edo:

The flat fifth is 21\37 = 681.1 cents
The sharp fifth is 22\37 = 713.5 cents

21\37 generates an anti-diatonic, or mavila, scale: 5 5 6 5 5 5 6
"minor third" = 10\37 = 324.3 cents
"major third" = 11\37 = 356.8 cents

22\37 generates an extreme superpythagorean scale: 7 7 1 7 7 7 1
"minor third" = 8\37 = 259.5 cents
"major third" = 14\37 = 454.1 cents

If the minor third of 259.5 cents is mapped to 7/6, this superpythagorean scale can be thought of as a variant of [[The Biosphere|Biome]] temperament.

Interestingly, the "major thirds" of both systems are not 12\37 = 389.2¢, the closest approximation to 5/4 available in 37edo.

37edo has great potential as a near-just xenharmonic system, with high-prime chords such as 8:10:11:13:14 with no perfect fifths available for common terrestrial progressions. The 9/8 approximation is usable but introduces error. One may choose to treat either of the intervals close to 3/2 as 3/2, introducing additional approximations with considerable error (see interval table below).

=Intervals= 
||~ Degrees of 37edo ||~ Cents Value ||~ Approximate Ratios
of 2.5.7.11.13.27 subgroup ||~ Ratios of 3 with
a sharp 3/2 ||~ Ratios of 3 with
a flat 3/2 ||~ Ratios of 9 with
194.59¢ 9/8 ||
|| 0 || 0.00 || 1/1 ||   ||   ||   ||
|| 1 || 32.43 ||   ||   ||   ||   ||
|| 2 || 64.86 || 28/27, 27/26 ||   ||   ||   ||
|| 3 || 97.30 ||   ||   ||   ||   ||
|| 4 || 129.73 || 14/13 || 13/12 || 12/11 ||   ||
|| 5 || 162.16 || 11/10 || 12/11 || 13/12 ||   ||
|| 6 || 194.59 ||   ||   ||   || 9/8, 10/9 ||
|| 7 || 227.03 || 8/7 ||   ||   ||   ||
|| 8 || 259.46 ||   || 7/6 ||   ||   ||
|| 9 || 291.89 || 13/11, 32/27 ||   || 6/5, 7/6 ||   ||
|| 10 || 324.32 ||   || 6/5 ||   ||   ||
|| 11 || 356.76 || 16/13, 27/22 ||   ||   || 11/9 ||
|| 12 || 389.19 || 5/4 ||   ||   ||   ||
|| 13 || 421.62 || 14/11 ||   ||   || 9/7 ||
|| 14 || 454.05 || 13/10 ||   ||   ||   ||
|| 15 || 486.49 ||   || 4/3 ||   ||   ||
|| 16 || 518.92 || 27/20 ||   || 4/3 ||   ||
|| 17 || 551.35 || 11/8 ||   ||   || 18/13 ||
|| 18 || 583.78 || 7/5 ||   ||   ||   ||
|| 19 || 616.22 || 10/7 ||   ||   ||   ||
|| 20 || 648.65 || 16/11 ||   ||   || 13/9 ||
|| 21 || 681.08 || 40/27 ||   || 3/2 ||   ||
|| 22 || 713.51 ||   || 3/2 ||   ||   ||
|| 23 || 745.95 || 20/13 ||   ||   ||   ||
|| 24 || 778.38 || 11/7 ||   ||   || 14/9 ||
|| 25 || 810.81 || 8/5 ||   ||   ||   ||
|| 26 || 843.24 || 13/8, 44/27 ||   ||   || 18/11 ||
|| 27 || 875.68 ||   || 5/3 ||   ||   ||
|| 28 || 908.11 || 22/13, 27/16 ||   || 5/3, 12/7 ||   ||
|| 29 || 940.54 ||   || 12/7 ||   ||   ||
|| 30 || 972.97 || 7/4 ||   ||   ||   ||
|| 31 || 1005.41 ||   ||   ||   || 16/9, 9/5 ||
|| 32 || 1037.84 || 20/11 || 11/6 || 24/13 ||   ||
|| 33 || 1070.27 || 13/7 || 24/13 || 11/6 ||   ||
|| 34 || 1102.70 ||   ||   ||   ||   ||
|| 35 || 1135.14 || 27/14, 52/27 ||   ||   ||   ||
|| 36 || 1167.57 ||   ||   ||   ||   ||

=Scales= 

[[roulette6]]
[[roulette7]]
[[roulette13]]
[[roulette19]]

Original HTML content:

<html><head><title>37edo</title></head><body>37edo is a scale derived from dividing the octave into 37 equal steps of approximately 32.43 cents each. Using its best (and sharp) fifth, it tempers out 250/243, making it a variant of <a class="wiki_link" href="/Porcupine%20family">porcupine temperament</a>. Using its alternative flat fifth, it tempers out 16875/16384, making it a negri tuning. It also tempers out 2187/2000, resulting in a temperament where three minor whole tones make up a fifth.<br />
<br />
37 edo is also a very accurate equal tuning for Undecimation Temperament, which has a generator of about 519 cents; 2 generators lead to 29/16; 3 generators to 32/13; 6 generators to a 10 cent sharp 6/1; 8 generators to a very accurate 11/1 and 10 generators to 20/1. It has a 7L+2s nonatonic MOS, which in 37-edo scale degrees is 0, 1, 6, 11, 16, 17, 22, 27, 32, making it a variety of Mavila; as well as a 16 note MOS.<br />
<br />
<br />
<br />
<!-- ws:start:WikiTextTocRule:8:&lt;img id=&quot;wikitext@@toc@@flat&quot; class=&quot;WikiMedia WikiMediaTocFlat&quot; title=&quot;Table of Contents&quot; src=&quot;/site/embedthumbnail/toc/flat?w=100&amp;h=16&quot;/&gt; --><!-- ws:end:WikiTextTocRule:8 --><!-- ws:start:WikiTextTocRule:9: --><a href="#Subgroups">Subgroups</a><!-- ws:end:WikiTextTocRule:9 --><!-- ws:start:WikiTextTocRule:10: --> | <a href="#The Two Fifths">The Two Fifths</a><!-- ws:end:WikiTextTocRule:10 --><!-- ws:start:WikiTextTocRule:11: --> | <a href="#Intervals">Intervals</a><!-- ws:end:WikiTextTocRule:11 --><!-- ws:start:WikiTextTocRule:12: --> | <a href="#Scales">Scales</a><!-- ws:end:WikiTextTocRule:12 --><!-- ws:start:WikiTextTocRule:13: -->
<!-- ws:end:WikiTextTocRule:13 --><hr />
<br />
<!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Subgroups"></a><!-- ws:end:WikiTextHeadingRule:0 -->Subgroups</h1>
 37edo offers close approximations to <a class="wiki_link" href="/OverToneSeries">harmonics</a> 5, 7, 11, and 13 [and a usable approximation of 9 as well].<br />
<br />
12\37 = 389.2 cents<br />
30\37 = 973.0 cents<br />
17\37 = 551.4 cents<br />
26\37 = 843.2 cents<br />
[6\37edo = 194.6 cents]<br />
<br />
This means 37 is quite accurate on the 2.5.7.11.13 subgroup, where it shares the same tuning as 111et. In fact, on the larger <a class="wiki_link" href="/k%2AN%20subgroups">3*37 subgroup</a> 2.27.5.7.11.13.51.57 subgroup not only shares the same tuning as 19-limit 111et, it tempers out the same commas.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:2:&lt;h1&gt; --><h1 id="toc1"><a name="The Two Fifths"></a><!-- ws:end:WikiTextHeadingRule:2 -->The Two Fifths</h1>
 The just <a class="wiki_link" href="/perfect%20fifth">perfect fifth</a> of frequency ratio 3:2 is not well-approximated, and falls between two intervals in 37edo:<br />
<br />
The flat fifth is 21\37 = 681.1 cents<br />
The sharp fifth is 22\37 = 713.5 cents<br />
<br />
21\37 generates an anti-diatonic, or mavila, scale: 5 5 6 5 5 5 6<br />
&quot;minor third&quot; = 10\37 = 324.3 cents<br />
&quot;major third&quot; = 11\37 = 356.8 cents<br />
<br />
22\37 generates an extreme superpythagorean scale: 7 7 1 7 7 7 1<br />
&quot;minor third&quot; = 8\37 = 259.5 cents<br />
&quot;major third&quot; = 14\37 = 454.1 cents<br />
<br />
If the minor third of 259.5 cents is mapped to 7/6, this superpythagorean scale can be thought of as a variant of <a class="wiki_link" href="/The%20Biosphere">Biome</a> temperament.<br />
<br />
Interestingly, the &quot;major thirds&quot; of both systems are not 12\37 = 389.2¢, the closest approximation to 5/4 available in 37edo.<br />
<br />
37edo has great potential as a near-just xenharmonic system, with high-prime chords such as 8:10:11:13:14 with no perfect fifths available for common terrestrial progressions. The 9/8 approximation is usable but introduces error. One may choose to treat either of the intervals close to 3/2 as 3/2, introducing additional approximations with considerable error (see interval table below).<br />
<br />
<!-- ws:start:WikiTextHeadingRule:4:&lt;h1&gt; --><h1 id="toc2"><a name="Intervals"></a><!-- ws:end:WikiTextHeadingRule:4 -->Intervals</h1>
 

<table class="wiki_table">
    <tr>
        <th>Degrees of 37edo<br />
</th>
        <th>Cents Value<br />
</th>
        <th>Approximate Ratios<br />
of 2.5.7.11.13.27 subgroup<br />
</th>
        <th>Ratios of 3 with<br />
a sharp 3/2<br />
</th>
        <th>Ratios of 3 with<br />
a flat 3/2<br />
</th>
        <th>Ratios of 9 with<br />
194.59¢ 9/8<br />
</th>
    </tr>
    <tr>
        <td>0<br />
</td>
        <td>0.00<br />
</td>
        <td>1/1<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>32.43<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>64.86<br />
</td>
        <td>28/27, 27/26<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>97.30<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>129.73<br />
</td>
        <td>14/13<br />
</td>
        <td>13/12<br />
</td>
        <td>12/11<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>162.16<br />
</td>
        <td>11/10<br />
</td>
        <td>12/11<br />
</td>
        <td>13/12<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>194.59<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>9/8, 10/9<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>227.03<br />
</td>
        <td>8/7<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>259.46<br />
</td>
        <td><br />
</td>
        <td>7/6<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>291.89<br />
</td>
        <td>13/11, 32/27<br />
</td>
        <td><br />
</td>
        <td>6/5, 7/6<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td>324.32<br />
</td>
        <td><br />
</td>
        <td>6/5<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td>356.76<br />
</td>
        <td>16/13, 27/22<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>11/9<br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td>389.19<br />
</td>
        <td>5/4<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td>421.62<br />
</td>
        <td>14/11<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>9/7<br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td>454.05<br />
</td>
        <td>13/10<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td>486.49<br />
</td>
        <td><br />
</td>
        <td>4/3<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td>518.92<br />
</td>
        <td>27/20<br />
</td>
        <td><br />
</td>
        <td>4/3<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>17<br />
</td>
        <td>551.35<br />
</td>
        <td>11/8<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>18/13<br />
</td>
    </tr>
    <tr>
        <td>18<br />
</td>
        <td>583.78<br />
</td>
        <td>7/5<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>19<br />
</td>
        <td>616.22<br />
</td>
        <td>10/7<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>20<br />
</td>
        <td>648.65<br />
</td>
        <td>16/11<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>13/9<br />
</td>
    </tr>
    <tr>
        <td>21<br />
</td>
        <td>681.08<br />
</td>
        <td>40/27<br />
</td>
        <td><br />
</td>
        <td>3/2<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>22<br />
</td>
        <td>713.51<br />
</td>
        <td><br />
</td>
        <td>3/2<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>23<br />
</td>
        <td>745.95<br />
</td>
        <td>20/13<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>24<br />
</td>
        <td>778.38<br />
</td>
        <td>11/7<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>14/9<br />
</td>
    </tr>
    <tr>
        <td>25<br />
</td>
        <td>810.81<br />
</td>
        <td>8/5<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>26<br />
</td>
        <td>843.24<br />
</td>
        <td>13/8, 44/27<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>18/11<br />
</td>
    </tr>
    <tr>
        <td>27<br />
</td>
        <td>875.68<br />
</td>
        <td><br />
</td>
        <td>5/3<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>28<br />
</td>
        <td>908.11<br />
</td>
        <td>22/13, 27/16<br />
</td>
        <td><br />
</td>
        <td>5/3, 12/7<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>29<br />
</td>
        <td>940.54<br />
</td>
        <td><br />
</td>
        <td>12/7<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>30<br />
</td>
        <td>972.97<br />
</td>
        <td>7/4<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>31<br />
</td>
        <td>1005.41<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>16/9, 9/5<br />
</td>
    </tr>
    <tr>
        <td>32<br />
</td>
        <td>1037.84<br />
</td>
        <td>20/11<br />
</td>
        <td>11/6<br />
</td>
        <td>24/13<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>33<br />
</td>
        <td>1070.27<br />
</td>
        <td>13/7<br />
</td>
        <td>24/13<br />
</td>
        <td>11/6<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>34<br />
</td>
        <td>1102.70<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>35<br />
</td>
        <td>1135.14<br />
</td>
        <td>27/14, 52/27<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>36<br />
</td>
        <td>1167.57<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
</table>

<br />
<!-- ws:start:WikiTextHeadingRule:6:&lt;h1&gt; --><h1 id="toc3"><a name="Scales"></a><!-- ws:end:WikiTextHeadingRule:6 -->Scales</h1>
 <br />
<a class="wiki_link" href="/roulette6">roulette6</a><br />
<a class="wiki_link" href="/roulette7">roulette7</a><br />
<a class="wiki_link" href="/roulette13">roulette13</a><br />
<a class="wiki_link" href="/roulette19">roulette19</a></body></html>