Lumatone mapping for 31edo: Difference between revisions
Jump to navigation
Jump to search
Created page with "There are many conceivable ways to map 31edo onto the Lumatone keyboard. Only one, however, agrees with the Standard Lumatone mapping for Pythagorean. This is also..." |
more mappings |
||
Line 1: | Line 1: | ||
There are many conceivable ways to map [[31edo]] onto the [[Lumatone]] keyboard | There are many conceivable ways to map [[31edo]] onto the [[Lumatone]] keyboard. | ||
==Standard Bosanquet-Wilson== | |||
This agrees with the [[Standard Lumatone mapping for Pythagorean]]. This is also "Preset 8 — 31-ET Bosanquet" in the official Lumatone manual. | |||
{{Lumatone EDO mapping|n=31|start=-2|xstep=5|ystep=-2}} | {{Lumatone EDO mapping|n=31|start=-2|xstep=5|ystep=-2}} | ||
==Double-Bosanquet== | |||
As in [[Lumatone mapping for neutral thirds scales]], this cuts the chromatic semitones in the "vertical" direction in half, so neutral intervals appear in between minor and major intervals. Octaves are no longer at a perfect horizontal separation but instead all over the place. | |||
{{Lumatone EDO mapping|n=31|start=-6|xstep=5|ystep=-1}} | |||
==Anti-Double-Bosanquet== | |||
This is a flipped version of Double-Bosanquet which results in octaves being closer to horizontal. The step shape normally mapped to major seconds is here mapped to neutral seconds. | |||
{{Lumatone EDO mapping|n=31|start=-5|xstep=4|ystep=1}} | |||
[[Category:Lumatone mappings]] | [[Category:Lumatone mappings]] |
Revision as of 00:04, 10 January 2022
There are many conceivable ways to map 31edo onto the Lumatone keyboard.
Standard Bosanquet-Wilson
This agrees with the Standard Lumatone mapping for Pythagorean. This is also "Preset 8 — 31-ET Bosanquet" in the official Lumatone manual.

29
3
1
6
11
16
21
30
4
9
14
19
24
29
3
2
7
12
17
22
27
1
6
11
16
21
0
5
10
15
20
25
30
4
9
14
19
24
29
3
3
8
13
18
23
28
2
7
12
17
22
27
1
6
11
16
21
1
6
11
16
21
26
0
5
10
15
20
25
30
4
9
14
19
24
29
3
4
9
14
19
24
29
3
8
13
18
23
28
2
7
12
17
22
27
1
6
11
16
21
2
7
12
17
22
27
1
6
11
16
21
26
0
5
10
15
20
25
30
4
9
14
19
24
29
3
10
15
20
25
30
4
9
14
19
24
29
3
8
13
18
23
28
2
7
12
17
22
27
1
6
11
16
21
23
28
2
7
12
17
22
27
1
6
11
16
21
26
0
5
10
15
20
25
30
4
9
14
19
24
10
15
20
25
30
4
9
14
19
24
29
3
8
13
18
23
28
2
7
12
17
22
27
23
28
2
7
12
17
22
27
1
6
11
16
21
26
0
5
10
15
20
25
10
15
20
25
30
4
9
14
19
24
29
3
8
13
18
23
28
23
28
2
7
12
17
22
27
1
6
11
16
21
26
10
15
20
25
30
4
9
14
19
24
29
23
28
2
7
12
17
22
27
10
15
20
25
30
23
28
Double-Bosanquet
As in Lumatone mapping for neutral thirds scales, this cuts the chromatic semitones in the "vertical" direction in half, so neutral intervals appear in between minor and major intervals. Octaves are no longer at a perfect horizontal separation but instead all over the place.

25
30
29
3
8
13
18
28
2
7
12
17
22
27
1
1
6
11
16
21
26
0
5
10
15
20
0
5
10
15
20
25
30
4
9
14
19
24
29
3
4
9
14
19
24
29
3
8
13
18
23
28
2
7
12
17
22
3
8
13
18
23
28
2
7
12
17
22
27
1
6
11
16
21
26
0
5
7
12
17
22
27
1
6
11
16
21
26
0
5
10
15
20
25
30
4
9
14
19
24
6
11
16
21
26
0
5
10
15
20
25
30
4
9
14
19
24
29
3
8
13
18
23
28
2
7
15
20
25
30
4
9
14
19
24
29
3
8
13
18
23
28
2
7
12
17
22
27
1
6
11
16
21
26
29
3
8
13
18
23
28
2
7
12
17
22
27
1
6
11
16
21
26
0
5
10
15
20
25
30
17
22
27
1
6
11
16
21
26
0
5
10
15
20
25
30
4
9
14
19
24
29
3
0
5
10
15
20
25
30
4
9
14
19
24
29
3
8
13
18
23
28
2
19
24
29
3
8
13
18
23
28
2
7
12
17
22
27
1
6
2
7
12
17
22
27
1
6
11
16
21
26
0
5
21
26
0
5
10
15
20
25
30
4
9
4
9
14
19
24
29
3
8
23
28
2
7
12
6
11
Anti-Double-Bosanquet
This is a flipped version of Double-Bosanquet which results in octaves being closer to horizontal. The step shape normally mapped to major seconds is here mapped to neutral seconds.

26
30
0
4
8
12
16
1
5
9
13
17
21
25
29
6
10
14
18
22
26
30
3
7
11
15
7
11
15
19
23
27
0
4
8
12
16
20
24
28
12
16
20
24
28
1
5
9
13
17
21
25
29
2
6
10
14
13
17
21
25
29
2
6
10
14
18
22
26
30
3
7
11
15
19
23
27
18
22
26
30
3
7
11
15
19
23
27
0
4
8
12
16
20
24
28
1
5
9
13
19
23
27
0
4
8
12
16
20
24
28
1
5
9
13
17
21
25
29
2
6
10
14
18
22
26
28
1
5
9
13
17
21
25
29
2
6
10
14
18
22
26
30
3
7
11
15
19
23
27
0
4
8
12
10
14
18
22
26
30
3
7
11
15
19
23
27
0
4
8
12
16
20
24
28
1
5
9
13
17
27
0
4
8
12
16
20
24
28
1
5
9
13
17
21
25
29
2
6
10
14
18
22
9
13
17
21
25
29
2
6
10
14
18
22
26
30
3
7
11
15
19
23
26
30
3
7
11
15
19
23
27
0
4
8
12
16
20
24
28
8
12
16
20
24
28
1
5
9
13
17
21
25
29
25
29
2
6
10
14
18
22
26
30
3
7
11
15
19
23
27
0
4
24
28
1
5
9
6
10