36edo: Difference between revisions
Jump to navigation
Jump to search
Wikispaces>hearneg **Imported revision 484175766 - Original comment: ** |
Wikispaces>hearneg **Imported revision 484176514 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User:hearneg|hearneg]] and made on <tt>2014-01-21 01: | : This revision was by author [[User:hearneg|hearneg]] and made on <tt>2014-01-21 01:40:29 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>484176514</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
Line 67: | Line 67: | ||
||< 2 ||< 66.667 ||< 28/27 || | ||< 2 ||< 66.667 ||< 28/27 || | ||
||< 3 ||< 100 ||< 256/243 || | ||< 3 ||< 100 ||< 256/243 || | ||
||< 4 ||< 133.333 ||< | ||< 4 ||< 133.333 ||< 243/224 || | ||
||< 5 ||< 166.667 ||< | ||< 5 ||< 166.667 ||< 54/49 || | ||
||< 6 ||< 200 ||< 9/8 || | ||< 6 ||< 200 ||< 9/8 || | ||
||< 7 ||< 233.333 ||< 8/7 || | ||< 7 ||< 233.333 ||< 8/7 || | ||
||< 8 ||< 266.667 ||< 7/6 || | ||< 8 ||< 266.667 ||< 7/6 || | ||
||< 9 ||< 300 ||< 32/37 || | ||< 9 ||< 300 ||< 32/37 || | ||
||< 10 ||< 333.333 ||< | ||< 10 ||< 333.333 ||< 98/81 || | ||
||< 11 ||< 366.667 ||< | ||< 11 ||< 366.667 ||< 243/196 || | ||
||< 12 ||< 400 ||< 81/64 || | ||< 12 ||< 400 ||< 81/64 || | ||
||< 13 ||< 433.333 ||< 9/7 || | ||< 13 ||< 433.333 ||< 9/7 || | ||
Line 88: | Line 88: | ||
||< 23 ||< 766.667 ||< 14/9 || | ||< 23 ||< 766.667 ||< 14/9 || | ||
||< 24 ||< 800 ||< 128/81 || | ||< 24 ||< 800 ||< 128/81 || | ||
||< 25 ||< 833.333 ||< | ||< 25 ||< 833.333 ||< 392/243 || | ||
||< 26 ||< 866.667 ||< | ||< 26 ||< 866.667 ||< 81/49 || | ||
||< 27 ||< 900 ||< 27/16 || | ||< 27 ||< 900 ||< 27/16 || | ||
||< 28 ||< 933.333 ||< 12/7 || | ||< 28 ||< 933.333 ||< 12/7 || | ||
||< 29 ||< 966.667 ||< 7/4 || | ||< 29 ||< 966.667 ||< 7/4 || | ||
||< 30 ||< 1000 ||< 16/9 || | ||< 30 ||< 1000 ||< 16/9 || | ||
||< 31 ||< 1033.333 ||< | ||< 31 ||< 1033.333 ||< 49/27 || | ||
||< 32 ||< 1066.667 ||< | ||< 32 ||< 1066.667 ||< 448/243 || | ||
||< 33 ||< 1100 ||< 243/128 || | ||< 33 ||< 1100 ||< 243/128 || | ||
||< 34 ||< 1133.333 ||< 27/14 || | ||< 34 ||< 1133.333 ||< 27/14 || | ||
Line 210: | Line 210: | ||
<td style="text-align: left;">133.333<br /> | <td style="text-align: left;">133.333<br /> | ||
</td> | </td> | ||
<td style="text-align: left;"><br /> | <td style="text-align: left;">243/224<br /> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 218: | Line 218: | ||
<td style="text-align: left;">166.667<br /> | <td style="text-align: left;">166.667<br /> | ||
</td> | </td> | ||
<td style="text-align: left;"><br /> | <td style="text-align: left;">54/49<br /> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 258: | Line 258: | ||
<td style="text-align: left;">333.333<br /> | <td style="text-align: left;">333.333<br /> | ||
</td> | </td> | ||
<td style="text-align: left;"><br /> | <td style="text-align: left;">98/81<br /> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 266: | Line 266: | ||
<td style="text-align: left;">366.667<br /> | <td style="text-align: left;">366.667<br /> | ||
</td> | </td> | ||
<td style="text-align: left;"><br /> | <td style="text-align: left;">243/196<br /> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 378: | Line 378: | ||
<td style="text-align: left;">833.333<br /> | <td style="text-align: left;">833.333<br /> | ||
</td> | </td> | ||
<td style="text-align: left;"><br /> | <td style="text-align: left;">392/243<br /> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 386: | Line 386: | ||
<td style="text-align: left;">866.667<br /> | <td style="text-align: left;">866.667<br /> | ||
</td> | </td> | ||
<td style="text-align: left;"><br /> | <td style="text-align: left;">81/49<br /> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 426: | Line 426: | ||
<td style="text-align: left;">1033.333<br /> | <td style="text-align: left;">1033.333<br /> | ||
</td> | </td> | ||
<td style="text-align: left;"><br /> | <td style="text-align: left;">49/27<br /> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 434: | Line 434: | ||
<td style="text-align: left;">1066.667<br /> | <td style="text-align: left;">1066.667<br /> | ||
</td> | </td> | ||
<td style="text-align: left;"><br /> | <td style="text-align: left;">448/243<br /> | ||
</td> | </td> | ||
</tr> | </tr> |
Revision as of 01:40, 21 January 2014
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author hearneg and made on 2014-01-21 01:40:29 UTC.
- The original revision id was 484176514.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
[[toc|flat]] 36edo, by definition, divides the 2:1 octave into 36 equal steps, each of which is exactly 33.333... cents. 36 is a highly composite number, factoring into 2x2x3x3. Since 36 is divisible by 12, it contains the overly-familiar [[12edo]] as a subset. It divides 12edo's 100-cent half step into three microtonal step of approximately 33 cents, which could be called "sixth tones." 36edo also contains [[18edo]] ("third tones") and [[9edo]] ("two-thirds tones") as subsets, not to mention the [[6edo]] whole tone scale, [[4edo]] full-diminished seventh chord, and the [[3edo]] augmented triad, all of which are present in 12edo. That 36edo contains 12edo as a subset makes in compatible with traditional instruments tuned to 12edo. By tuning one 12-edo instrument up or down about 33 cents, one can arrive at a 24-tone subset of 36 edo (see, for instance, Jacob Barton's piece for two clarinets, [[http://www.jacobbarton.net/2010/02/de-quinin-for-two-clarinets/|De-quinin']]). Three 12edo instruments could play the entire gamut. =As a harmonic temperament= For those interested in approximations to just intonation, 36edo offers no improvement over 12edo in the 5-limit, since its nearest approximation to 5:4 is the overly-familiar 400-cent sharp third. However, it excels at approximations involving 3 and 7. As a 3 and 7 tuning, or in other words as a tuning for the 2.3.7 [[just intonation subgroup]], 36edo's single degree of around 33 cents serves a double function as 49:48, the so-called [[http://en.wikipedia.org/wiki/Septimal_diesis|Slendro diesis]] of around 36 cents, and as 64:63, the so-called [[http://en.wikipedia.org/wiki/Septimal_comma|septimal comma]] of around 27 cents. Meanwhile, its second degree functions as 28:27, the so-called [[http://en.wikipedia.org/wiki/Septimal_third-tone|Septimal third-tone]] (which = 49:48 x 64:63). The 2.3.7 subgroup can be extended to the [[k*N subgroups|2*36 subgroup]] 2.3.25.7.55.13.17, and on this subgroup it tempers out the same commas as [[72edo]] does in the full [[17-limit]]. 36 tempers out, like 12, 81/80, 128/125 and 648/625 in the 5-limit. It departs from 12 in the 7-limit, tempering out 686/675, and as a no-fives temperament, 1029/1024 and 118098/117649. In the 11-limit, it tempers out 56/55, 245/242 and 540/539, and is the [[optimal patent val]] for the rank four temperament tempering out 56/55, as well as the rank three temperament [[Didymus rank three family|melpomene]] tempering out 81/80 and 56/55. In the 13-limit, it tempers out 78/77, in the 17-limit 51/50, and in the 19-limit 76/75, 91/90 and 96/95. As a 5-limit temperament, the patent val for 36edo is [[Wedgies and Multivals|contorted]], meaning there are notes of it which cannot be reached from the unison using only 5-limit intervals. A curious alternative val for the 5-limit is <36 65 116| which is not contorted. It is also a meantone val, in the sense that 81/80 is tempered out. However, the "comma" |29 0 -9> is also tempered out, and the "fifth", 29\36, is actually approximately 7/4, whereas the "major third", 44\36, is actually approximately 7/3. Any 5-limit musical piece or scale which is a [[transversal]] for a meantone piece or scale will be converted to a no-fives piece tempering out 1029/1024 in place of 81/80 by applying this val. Heinz Bohlen proposed it as a suitable temperament for approximating his 833-cents scale. =Approximations= ==3-limit (Pythagorean) approximations (same as 12edo):== 3/2 = 701.955... cents; 21 degrees of 36edo = 700 cents. 4/3 = 498.045... cents; 15 degrees of 36edo = 500 cents. 9/8 = 203.910... cents; 6 degrees of 36edo = 200 cents. 16/9 = 996.090... cents; 30 degrees of 36edo = 1000 cents. 27/16 = 905.865... cents; 27 degrees of 36edo = 900 cents. 32/27 = 294.135... cents; 9 degrees of 36edo = 300 cents. 81/64 = 407.820... cents; 12 degrees of 36edo = 400 cents. 128/81 = 792.180... cents; 24 degrees of 36edo = 800 cents. ==7-limit approximations:== ===7 only:=== 7/4 = 968.826... cents; 29 degrees of 36edo = 966.666... cents. 8/7 = 231.174... cents; 7 degrees of 36edo = 233.333... cents. 49/32 = 737.652... cents; 22 degrees of 36edo = 733.333... cents. 64/49 = 462.348... cents; 14 degrees of 36edo = 466.666... cents. ===3 and 7:=== 7/6 = 266.871... cents; 8 degrees of 36edo = 266.666... cents. 12/7 = 933.129... cents; 28 degrees of 36 = 933.333... cents. 9/7 = 435.084... cents; 13 degrees of 36edo = 433.333... cents. 14/9 = 764.916... cents; 23 degrees of 36edo = 766.666... cents. 28/27 = 62.961... cents; 2 degrees of 36edo = 66.666... cents. 27/14 = 1137.039... cents; 34 degrees of 36edo = 1133.333... cents. 21/16 = 470.781... cents; 14 degrees of 36edo = 466.666... cents. 32/21 = 729.219... cents; 22 degrees of 36edo = 733.333... cents. 49/48 = 35.697... cents; 1 degree of 36edo = 33.333... cents. 96/49 = 1164.303... cents; 35 degrees of 36edo = 1166.666... cents. 49/36 = 533.742... cents; 16 degrees of 36edo = 533.333... cents. 72/49 = 666.258... cents; 20 degrees of 36edo = 666.666... cents. 64/63 = 27.264... cents; 1 degree of 36edo = 33.333... cents. 63/32 = 1172.736... cents; 35 degrees of 36edo = 1166.666... cents. And now all that in a table, because tables are good. ||~ Degrees of 36edo ||~ Cents Value ||~ Approx. ratios of 2.3.7 || ||< 0 ||< 0 ||< 1/1 || ||< 1 ||< 33.333 ||< 64/63 ~ 49/48 || ||< 2 ||< 66.667 ||< 28/27 || ||< 3 ||< 100 ||< 256/243 || ||< 4 ||< 133.333 ||< 243/224 || ||< 5 ||< 166.667 ||< 54/49 || ||< 6 ||< 200 ||< 9/8 || ||< 7 ||< 233.333 ||< 8/7 || ||< 8 ||< 266.667 ||< 7/6 || ||< 9 ||< 300 ||< 32/37 || ||< 10 ||< 333.333 ||< 98/81 || ||< 11 ||< 366.667 ||< 243/196 || ||< 12 ||< 400 ||< 81/64 || ||< 13 ||< 433.333 ||< 9/7 || ||< 14 ||< 466.667 ||< 64/49 ~ 21/16 || ||< 15 ||< 500 ||< 4/3 || ||< 16 ||< 533.333 ||< 49/36 || ||< 17 ||< 566.667 ||< || ||< 18 ||< 600 ||< || ||< 19 ||< 633.333 ||< || ||< 20 ||< 666.667 ||< 72/49 || ||< 21 ||< 700 ||< 3/2 || ||< 22 ||< 733.333 ||< 49/32 ~ 32/21 || ||< 23 ||< 766.667 ||< 14/9 || ||< 24 ||< 800 ||< 128/81 || ||< 25 ||< 833.333 ||< 392/243 || ||< 26 ||< 866.667 ||< 81/49 || ||< 27 ||< 900 ||< 27/16 || ||< 28 ||< 933.333 ||< 12/7 || ||< 29 ||< 966.667 ||< 7/4 || ||< 30 ||< 1000 ||< 16/9 || ||< 31 ||< 1033.333 ||< 49/27 || ||< 32 ||< 1066.667 ||< 448/243 || ||< 33 ||< 1100 ||< 243/128 || ||< 34 ||< 1133.333 ||< 27/14 || ||< 35 ||< 1166.667 ||< 63/32 ~ 96/49 || =Music= * <span class="ywp-page-play-pause ywp-page-audio ywp-link-hover ywp-page-img-link">[[http://micro.soonlabel.com/gene_ward_smith/36edo/something.mp3|Something]]</span> by [[Herman Klein]] * <span class="ywp-page-play-pause ywp-page-audio ywp-link-hover ywp-page-img-link">[[http://micro.soonlabel.com/gene_ward_smith/36edo/hay.mp3|Hay]]</span> by [[Joe Hayseed]] * <span class="ywp-page-play-pause ywp-page-audio ywp-link-hover ywp-page-img-link">[[http://micro.soonlabel.com/gene_ward_smith/36edo/boomers.mp3|Boomers]]</span> by [[Ivan Bratt]][[media type="custom" key="9486498"]] * [[http://micro.soonlabel.com/36edo/20120418-36edo.mp3|Thoughts in Legolas Tuning]] by [[Chris Vaisvil]]
Original HTML content:
<html><head><title>36edo</title></head><body><!-- ws:start:WikiTextTocRule:15:<img id="wikitext@@toc@@flat" class="WikiMedia WikiMediaTocFlat" title="Table of Contents" src="/site/embedthumbnail/toc/flat?w=100&h=16"/> --><!-- ws:end:WikiTextTocRule:15 --><!-- ws:start:WikiTextTocRule:16: --><a href="#As a harmonic temperament">As a harmonic temperament</a><!-- ws:end:WikiTextTocRule:16 --><!-- ws:start:WikiTextTocRule:17: --> | <a href="#Approximations">Approximations</a><!-- ws:end:WikiTextTocRule:17 --><!-- ws:start:WikiTextTocRule:18: --><!-- ws:end:WikiTextTocRule:18 --><!-- ws:start:WikiTextTocRule:19: --><!-- ws:end:WikiTextTocRule:19 --><!-- ws:start:WikiTextTocRule:20: --><!-- ws:end:WikiTextTocRule:20 --><!-- ws:start:WikiTextTocRule:21: --><!-- ws:end:WikiTextTocRule:21 --><!-- ws:start:WikiTextTocRule:22: --> | <a href="#Music">Music</a><!-- ws:end:WikiTextTocRule:22 --><!-- ws:start:WikiTextTocRule:23: --> <!-- ws:end:WikiTextTocRule:23 -->36edo, by definition, divides the 2:1 octave into 36 equal steps, each of which is exactly 33.333... cents.<br /> <br /> 36 is a highly composite number, factoring into 2x2x3x3. Since 36 is divisible by 12, it contains the overly-familiar <a class="wiki_link" href="/12edo">12edo</a> as a subset. It divides 12edo's 100-cent half step into three microtonal step of approximately 33 cents, which could be called "sixth tones." 36edo also contains <a class="wiki_link" href="/18edo">18edo</a> ("third tones") and <a class="wiki_link" href="/9edo">9edo</a> ("two-thirds tones") as subsets, not to mention the <a class="wiki_link" href="/6edo">6edo</a> whole tone scale, <a class="wiki_link" href="/4edo">4edo</a> full-diminished seventh chord, and the <a class="wiki_link" href="/3edo">3edo</a> augmented triad, all of which are present in 12edo.<br /> <br /> That 36edo contains 12edo as a subset makes in compatible with traditional instruments tuned to 12edo. By tuning one 12-edo instrument up or down about 33 cents, one can arrive at a 24-tone subset of 36 edo (see, for instance, Jacob Barton's piece for two clarinets, <a class="wiki_link_ext" href="http://www.jacobbarton.net/2010/02/de-quinin-for-two-clarinets/" rel="nofollow">De-quinin'</a>). Three 12edo instruments could play the entire gamut.<br /> <br /> <!-- ws:start:WikiTextHeadingRule:1:<h1> --><h1 id="toc0"><a name="As a harmonic temperament"></a><!-- ws:end:WikiTextHeadingRule:1 -->As a harmonic temperament</h1> <br /> For those interested in approximations to just intonation, 36edo offers no improvement over 12edo in the 5-limit, since its nearest approximation to 5:4 is the overly-familiar 400-cent sharp third. However, it excels at approximations involving 3 and 7. As a 3 and 7 tuning, or in other words as a tuning for the 2.3.7 <a class="wiki_link" href="/just%20intonation%20subgroup">just intonation subgroup</a>, 36edo's single degree of around 33 cents serves a double function as 49:48, the so-called <a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Septimal_diesis" rel="nofollow">Slendro diesis</a> of around 36 cents, and as 64:63, the so-called <a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Septimal_comma" rel="nofollow">septimal comma</a> of around 27 cents. Meanwhile, its second degree functions as 28:27, the so-called <a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Septimal_third-tone" rel="nofollow">Septimal third-tone</a> (which = 49:48 x 64:63). The 2.3.7 subgroup can be extended to the <a class="wiki_link" href="/k%2AN%20subgroups">2*36 subgroup</a> 2.3.25.7.55.13.17, and on this subgroup it tempers out the same commas as <a class="wiki_link" href="/72edo">72edo</a> does in the full <a class="wiki_link" href="/17-limit">17-limit</a>.<br /> <br /> 36 tempers out, like 12, 81/80, 128/125 and 648/625 in the 5-limit. It departs from 12 in the 7-limit, tempering out 686/675, and as a no-fives temperament, 1029/1024 and 118098/117649. In the 11-limit, it tempers out 56/55, 245/242 and 540/539, and is the <a class="wiki_link" href="/optimal%20patent%20val">optimal patent val</a> for the rank four temperament tempering out 56/55, as well as the rank three temperament <a class="wiki_link" href="/Didymus%20rank%20three%20family">melpomene</a> tempering out 81/80 and 56/55. In the 13-limit, it tempers out 78/77, in the 17-limit 51/50, and in the 19-limit 76/75, 91/90 and 96/95.<br /> <br /> As a 5-limit temperament, the patent val for 36edo is <a class="wiki_link" href="/Wedgies%20and%20Multivals">contorted</a>, meaning there are notes of it which cannot be reached from the unison using only 5-limit intervals. A curious alternative val for the 5-limit is <36 65 116| which is not contorted. It is also a meantone val, in the sense that 81/80 is tempered out. However, the "comma" |29 0 -9> is also tempered out, and the "fifth", 29\36, is actually approximately 7/4, whereas the "major third", 44\36, is actually approximately 7/3. Any 5-limit musical piece or scale which is a <a class="wiki_link" href="/transversal">transversal</a> for a meantone piece or scale will be converted to a no-fives piece tempering out 1029/1024 in place of 81/80 by applying this val.<br /> <br /> Heinz Bohlen proposed it as a suitable temperament for approximating his 833-cents scale.<br /> <br /> <!-- ws:start:WikiTextHeadingRule:3:<h1> --><h1 id="toc1"><a name="Approximations"></a><!-- ws:end:WikiTextHeadingRule:3 -->Approximations</h1> <!-- ws:start:WikiTextHeadingRule:5:<h2> --><h2 id="toc2"><a name="Approximations-3-limit (Pythagorean) approximations (same as 12edo):"></a><!-- ws:end:WikiTextHeadingRule:5 -->3-limit (Pythagorean) approximations (same as 12edo):</h2> <br /> 3/2 = 701.955... cents; 21 degrees of 36edo = 700 cents.<br /> 4/3 = 498.045... cents; 15 degrees of 36edo = 500 cents.<br /> 9/8 = 203.910... cents; 6 degrees of 36edo = 200 cents.<br /> 16/9 = 996.090... cents; 30 degrees of 36edo = 1000 cents.<br /> 27/16 = 905.865... cents; 27 degrees of 36edo = 900 cents.<br /> 32/27 = 294.135... cents; 9 degrees of 36edo = 300 cents.<br /> 81/64 = 407.820... cents; 12 degrees of 36edo = 400 cents.<br /> 128/81 = 792.180... cents; 24 degrees of 36edo = 800 cents.<br /> <br /> <br /> <!-- ws:start:WikiTextHeadingRule:7:<h2> --><h2 id="toc3"><a name="Approximations-7-limit approximations:"></a><!-- ws:end:WikiTextHeadingRule:7 -->7-limit approximations:</h2> <br /> <!-- ws:start:WikiTextHeadingRule:9:<h3> --><h3 id="toc4"><a name="Approximations-7-limit approximations:-7 only:"></a><!-- ws:end:WikiTextHeadingRule:9 -->7 only:</h3> 7/4 = 968.826... cents; 29 degrees of 36edo = 966.666... cents.<br /> 8/7 = 231.174... cents; 7 degrees of 36edo = 233.333... cents.<br /> 49/32 = 737.652... cents; 22 degrees of 36edo = 733.333... cents.<br /> 64/49 = 462.348... cents; 14 degrees of 36edo = 466.666... cents.<br /> <br /> <!-- ws:start:WikiTextHeadingRule:11:<h3> --><h3 id="toc5"><a name="Approximations-7-limit approximations:-3 and 7:"></a><!-- ws:end:WikiTextHeadingRule:11 -->3 and 7:</h3> 7/6 = 266.871... cents; 8 degrees of 36edo = 266.666... cents.<br /> 12/7 = 933.129... cents; 28 degrees of 36 = 933.333... cents.<br /> 9/7 = 435.084... cents; 13 degrees of 36edo = 433.333... cents.<br /> 14/9 = 764.916... cents; 23 degrees of 36edo = 766.666... cents.<br /> 28/27 = 62.961... cents; 2 degrees of 36edo = 66.666... cents.<br /> 27/14 = 1137.039... cents; 34 degrees of 36edo = 1133.333... cents.<br /> 21/16 = 470.781... cents; 14 degrees of 36edo = 466.666... cents.<br /> 32/21 = 729.219... cents; 22 degrees of 36edo = 733.333... cents.<br /> 49/48 = 35.697... cents; 1 degree of 36edo = 33.333... cents.<br /> 96/49 = 1164.303... cents; 35 degrees of 36edo = 1166.666... cents.<br /> 49/36 = 533.742... cents; 16 degrees of 36edo = 533.333... cents.<br /> 72/49 = 666.258... cents; 20 degrees of 36edo = 666.666... cents.<br /> 64/63 = 27.264... cents; 1 degree of 36edo = 33.333... cents.<br /> 63/32 = 1172.736... cents; 35 degrees of 36edo = 1166.666... cents.<br /> <br /> <br /> And now all that in a table, because tables are good.<br /> <table class="wiki_table"> <tr> <th>Degrees of 36edo<br /> </th> <th>Cents Value<br /> </th> <th>Approx. ratios of 2.3.7<br /> </th> </tr> <tr> <td style="text-align: left;">0<br /> </td> <td style="text-align: left;">0<br /> </td> <td style="text-align: left;">1/1<br /> </td> </tr> <tr> <td style="text-align: left;">1<br /> </td> <td style="text-align: left;">33.333<br /> </td> <td style="text-align: left;">64/63 ~ 49/48<br /> </td> </tr> <tr> <td style="text-align: left;">2<br /> </td> <td style="text-align: left;">66.667<br /> </td> <td style="text-align: left;">28/27<br /> </td> </tr> <tr> <td style="text-align: left;">3<br /> </td> <td style="text-align: left;">100<br /> </td> <td style="text-align: left;">256/243<br /> </td> </tr> <tr> <td style="text-align: left;">4<br /> </td> <td style="text-align: left;">133.333<br /> </td> <td style="text-align: left;">243/224<br /> </td> </tr> <tr> <td style="text-align: left;">5<br /> </td> <td style="text-align: left;">166.667<br /> </td> <td style="text-align: left;">54/49<br /> </td> </tr> <tr> <td style="text-align: left;">6<br /> </td> <td style="text-align: left;">200<br /> </td> <td style="text-align: left;">9/8<br /> </td> </tr> <tr> <td style="text-align: left;">7<br /> </td> <td style="text-align: left;">233.333<br /> </td> <td style="text-align: left;">8/7<br /> </td> </tr> <tr> <td style="text-align: left;">8<br /> </td> <td style="text-align: left;">266.667<br /> </td> <td style="text-align: left;">7/6<br /> </td> </tr> <tr> <td style="text-align: left;">9<br /> </td> <td style="text-align: left;">300<br /> </td> <td style="text-align: left;">32/37<br /> </td> </tr> <tr> <td style="text-align: left;">10<br /> </td> <td style="text-align: left;">333.333<br /> </td> <td style="text-align: left;">98/81<br /> </td> </tr> <tr> <td style="text-align: left;">11<br /> </td> <td style="text-align: left;">366.667<br /> </td> <td style="text-align: left;">243/196<br /> </td> </tr> <tr> <td style="text-align: left;">12<br /> </td> <td style="text-align: left;">400<br /> </td> <td style="text-align: left;">81/64<br /> </td> </tr> <tr> <td style="text-align: left;">13<br /> </td> <td style="text-align: left;">433.333<br /> </td> <td style="text-align: left;">9/7<br /> </td> </tr> <tr> <td style="text-align: left;">14<br /> </td> <td style="text-align: left;">466.667<br /> </td> <td style="text-align: left;">64/49 ~ 21/16<br /> </td> </tr> <tr> <td style="text-align: left;">15<br /> </td> <td style="text-align: left;">500<br /> </td> <td style="text-align: left;">4/3<br /> </td> </tr> <tr> <td style="text-align: left;">16<br /> </td> <td style="text-align: left;">533.333<br /> </td> <td style="text-align: left;">49/36<br /> </td> </tr> <tr> <td style="text-align: left;">17<br /> </td> <td style="text-align: left;">566.667<br /> </td> <td style="text-align: left;"><br /> </td> </tr> <tr> <td style="text-align: left;">18<br /> </td> <td style="text-align: left;">600<br /> </td> <td style="text-align: left;"><br /> </td> </tr> <tr> <td style="text-align: left;">19<br /> </td> <td style="text-align: left;">633.333<br /> </td> <td style="text-align: left;"><br /> </td> </tr> <tr> <td style="text-align: left;">20<br /> </td> <td style="text-align: left;">666.667<br /> </td> <td style="text-align: left;">72/49<br /> </td> </tr> <tr> <td style="text-align: left;">21<br /> </td> <td style="text-align: left;">700<br /> </td> <td style="text-align: left;">3/2<br /> </td> </tr> <tr> <td style="text-align: left;">22<br /> </td> <td style="text-align: left;">733.333<br /> </td> <td style="text-align: left;">49/32 ~ 32/21<br /> </td> </tr> <tr> <td style="text-align: left;">23<br /> </td> <td style="text-align: left;">766.667<br /> </td> <td style="text-align: left;">14/9<br /> </td> </tr> <tr> <td style="text-align: left;">24<br /> </td> <td style="text-align: left;">800<br /> </td> <td style="text-align: left;">128/81<br /> </td> </tr> <tr> <td style="text-align: left;">25<br /> </td> <td style="text-align: left;">833.333<br /> </td> <td style="text-align: left;">392/243<br /> </td> </tr> <tr> <td style="text-align: left;">26<br /> </td> <td style="text-align: left;">866.667<br /> </td> <td style="text-align: left;">81/49<br /> </td> </tr> <tr> <td style="text-align: left;">27<br /> </td> <td style="text-align: left;">900<br /> </td> <td style="text-align: left;">27/16<br /> </td> </tr> <tr> <td style="text-align: left;">28<br /> </td> <td style="text-align: left;">933.333<br /> </td> <td style="text-align: left;">12/7<br /> </td> </tr> <tr> <td style="text-align: left;">29<br /> </td> <td style="text-align: left;">966.667<br /> </td> <td style="text-align: left;">7/4<br /> </td> </tr> <tr> <td style="text-align: left;">30<br /> </td> <td style="text-align: left;">1000<br /> </td> <td style="text-align: left;">16/9<br /> </td> </tr> <tr> <td style="text-align: left;">31<br /> </td> <td style="text-align: left;">1033.333<br /> </td> <td style="text-align: left;">49/27<br /> </td> </tr> <tr> <td style="text-align: left;">32<br /> </td> <td style="text-align: left;">1066.667<br /> </td> <td style="text-align: left;">448/243<br /> </td> </tr> <tr> <td style="text-align: left;">33<br /> </td> <td style="text-align: left;">1100<br /> </td> <td style="text-align: left;">243/128<br /> </td> </tr> <tr> <td style="text-align: left;">34<br /> </td> <td style="text-align: left;">1133.333<br /> </td> <td style="text-align: left;">27/14<br /> </td> </tr> <tr> <td style="text-align: left;">35<br /> </td> <td style="text-align: left;">1166.667<br /> </td> <td style="text-align: left;">63/32 ~ 96/49<br /> </td> </tr> </table> <br /> <!-- ws:start:WikiTextHeadingRule:13:<h1> --><h1 id="toc6"><a name="Music"></a><!-- ws:end:WikiTextHeadingRule:13 -->Music</h1> <ul><li><span class="ywp-page-play-pause ywp-page-audio ywp-link-hover ywp-page-img-link"><a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/36edo/something.mp3" rel="nofollow">Something</a></span> by <a class="wiki_link" href="/Herman%20Klein">Herman Klein</a></li><li><span class="ywp-page-play-pause ywp-page-audio ywp-link-hover ywp-page-img-link"><a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/36edo/hay.mp3" rel="nofollow">Hay</a></span> by <a class="wiki_link" href="/Joe%20Hayseed">Joe Hayseed</a></li><li><span class="ywp-page-play-pause ywp-page-audio ywp-link-hover ywp-page-img-link"><a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/36edo/boomers.mp3" rel="nofollow">Boomers</a></span> by <a class="wiki_link" href="/Ivan%20Bratt">Ivan Bratt</a><!-- ws:start:WikiTextMediaRule:0:<img src="http://www.wikispaces.com/site/embedthumbnail/custom/9486498?h=0&w=0" class="WikiMedia WikiMediaCustom" id="wikitext@@media@@type=&quot;custom&quot; key=&quot;9486498&quot;" title="Custom Media"/> --><script type="text/javascript" src="http://webplayer.yahooapis.com/player.js"> </script><!-- ws:end:WikiTextMediaRule:0 --></li><li><a class="wiki_link_ext" href="http://micro.soonlabel.com/36edo/20120418-36edo.mp3" rel="nofollow">Thoughts in Legolas Tuning</a> by <a class="wiki_link" href="/Chris%20Vaisvil">Chris Vaisvil</a></li></ul></body></html>