32edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>genewardsmith
**Imported revision 219942206 - Original comment: **
 
Wikispaces>genewardsmith
**Imported revision 219952490 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-04-13 13:08:14 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-04-13 13:32:02 UTC</tt>.<br>
: The original revision id was <tt>219942206</tt>.<br>
: The original revision id was <tt>219952490</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">The //32 equal division// divides the octave into 32 equal parts of precisely 37.5 cents each. While even advocates of less-common edos can struggle to find something about it worth noting, it does provide an excellent tuning for [[Petr Parízek]]'s sixix temperament, which tempers out the 5-limit sixix comma, 3125/2916, using its 9\32 generator of size 337.5 cents.
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">The //32 equal division// divides the octave into 32 equal parts of precisely 37.5 cents each. While even advocates of less-common edos can struggle to find something about it worth noting, it does provide an excellent tuning for [[Petr Parízek]]'s sixix temperament, which tempers out the 5-limit sixix comma, 3125/2916, using its 9\32 generator of size 337.5 cents. Parízek's preferred generator for sixix is (128/15)^(1/11), which is 337.430 cents, so 32edo does sixix about as well as sixix can be done.


It also tempers out 2048/2025 in the 5-limit, and 50/49 with 64/63 in the 7-limit, which means it supports [[Diaschismic family|pajara temperament]], with a very sharp fifth of 712.5 cents which could be experimented with by those with a penchant for fifths even sharper than the fifth of [[27edo]].
=Z function=
Below is a plot of the Z function, showing how its peak value is shifted above 32, corresponding to a zeta tuning with flattened octaves. This will ameliorate the fifth somewhat, at the expense of the third.
[[image:plot32.png]]


=Music=
=Music=
[[http://micro.soonlabel.com/petr_parizek/3125_2916_temp_q32.ogg|Sixix] by Petr Parízek</pre></div>
[[http://micro.soonlabel.com/petr_parizek/3125_2916_temp_q32.ogg|Sixix]] by Petr Parízek</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;32edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;The &lt;em&gt;32 equal division&lt;/em&gt; divides the octave into 32 equal parts of precisely 37.5 cents each. While even advocates of less-common edos can struggle to find something about it worth noting, it does provide an excellent tuning for &lt;a class="wiki_link" href="/Petr%20Par%C3%ADzek"&gt;Petr Parízek&lt;/a&gt;'s sixix temperament, which tempers out the 5-limit sixix comma, 3125/2916, using its 9\32 generator of size 337.5 cents.&lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;32edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;The &lt;em&gt;32 equal division&lt;/em&gt; divides the octave into 32 equal parts of precisely 37.5 cents each. While even advocates of less-common edos can struggle to find something about it worth noting, it does provide an excellent tuning for &lt;a class="wiki_link" href="/Petr%20Par%C3%ADzek"&gt;Petr Parízek&lt;/a&gt;'s sixix temperament, which tempers out the 5-limit sixix comma, 3125/2916, using its 9\32 generator of size 337.5 cents. Parízek's preferred generator for sixix is (128/15)^(1/11), which is 337.430 cents, so 32edo does sixix about as well as sixix can be done.&lt;br /&gt;
&lt;br /&gt;
It also tempers out 2048/2025 in the 5-limit, and 50/49 with 64/63 in the 7-limit, which means it supports &lt;a class="wiki_link" href="/Diaschismic%20family"&gt;pajara temperament&lt;/a&gt;, with a very sharp fifth of 712.5 cents which could be experimented with by those with a penchant for fifths even sharper than the fifth of &lt;a class="wiki_link" href="/27edo"&gt;27edo&lt;/a&gt;.&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Z function"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Z function&lt;/h1&gt;
Below is a plot of the Z function, showing how its peak value is shifted above 32, corresponding to a zeta tuning with flattened octaves. This will ameliorate the fifth somewhat, at the expense of the third.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextLocalImageRule:4:&amp;lt;img src=&amp;quot;/file/view/plot32.png/219952208/plot32.png&amp;quot; alt=&amp;quot;&amp;quot; title=&amp;quot;&amp;quot; /&amp;gt; --&gt;&lt;img src="/file/view/plot32.png/219952208/plot32.png" alt="plot32.png" title="plot32.png" /&gt;&lt;!-- ws:end:WikiTextLocalImageRule:4 --&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Music"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Music&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="Music"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Music&lt;/h1&gt;
[[&lt;!-- ws:start:WikiTextUrlRule:6:http://micro.soonlabel.com/petr_parizek/3125_2916_temp_q32.ogg --&gt;&lt;a class="wiki_link_ext" href="http://micro.soonlabel.com/petr_parizek/3125_2916_temp_q32.ogg" rel="nofollow"&gt;http://micro.soonlabel.com/petr_parizek/3125_2916_temp_q32.ogg&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:6 --&gt;|Sixix] by Petr Parízek&lt;/body&gt;&lt;/html&gt;</pre></div>
&lt;a class="wiki_link_ext" href="http://micro.soonlabel.com/petr_parizek/3125_2916_temp_q32.ogg" rel="nofollow"&gt;Sixix&lt;/a&gt; by Petr Parízek&lt;/body&gt;&lt;/html&gt;</pre></div>

Revision as of 13:32, 13 April 2011

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author genewardsmith and made on 2011-04-13 13:32:02 UTC.
The original revision id was 219952490.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

The //32 equal division// divides the octave into 32 equal parts of precisely 37.5 cents each. While even advocates of less-common edos can struggle to find something about it worth noting, it does provide an excellent tuning for [[Petr Parízek]]'s sixix temperament, which tempers out the 5-limit sixix comma, 3125/2916, using its 9\32 generator of size 337.5 cents. Parízek's preferred generator for sixix is (128/15)^(1/11), which is 337.430 cents, so 32edo does sixix about as well as sixix can be done.

It also tempers out 2048/2025 in the 5-limit, and 50/49 with 64/63 in the 7-limit, which means it supports [[Diaschismic family|pajara temperament]], with a very sharp fifth of 712.5 cents which could be experimented with by those with a penchant for fifths even sharper than the fifth of [[27edo]].

=Z function=
Below is a plot of the Z function, showing how its peak value is shifted above 32, corresponding to a zeta tuning with flattened octaves. This will ameliorate the fifth somewhat, at the expense of the third.

[[image:plot32.png]]

=Music=
[[http://micro.soonlabel.com/petr_parizek/3125_2916_temp_q32.ogg|Sixix]] by Petr Parízek

Original HTML content:

<html><head><title>32edo</title></head><body>The <em>32 equal division</em> divides the octave into 32 equal parts of precisely 37.5 cents each. While even advocates of less-common edos can struggle to find something about it worth noting, it does provide an excellent tuning for <a class="wiki_link" href="/Petr%20Par%C3%ADzek">Petr Parízek</a>'s sixix temperament, which tempers out the 5-limit sixix comma, 3125/2916, using its 9\32 generator of size 337.5 cents. Parízek's preferred generator for sixix is (128/15)^(1/11), which is 337.430 cents, so 32edo does sixix about as well as sixix can be done.<br />
<br />
It also tempers out 2048/2025 in the 5-limit, and 50/49 with 64/63 in the 7-limit, which means it supports <a class="wiki_link" href="/Diaschismic%20family">pajara temperament</a>, with a very sharp fifth of 712.5 cents which could be experimented with by those with a penchant for fifths even sharper than the fifth of <a class="wiki_link" href="/27edo">27edo</a>.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Z function"></a><!-- ws:end:WikiTextHeadingRule:0 -->Z function</h1>
Below is a plot of the Z function, showing how its peak value is shifted above 32, corresponding to a zeta tuning with flattened octaves. This will ameliorate the fifth somewhat, at the expense of the third.<br />
<br />
<!-- ws:start:WikiTextLocalImageRule:4:&lt;img src=&quot;/file/view/plot32.png/219952208/plot32.png&quot; alt=&quot;&quot; title=&quot;&quot; /&gt; --><img src="/file/view/plot32.png/219952208/plot32.png" alt="plot32.png" title="plot32.png" /><!-- ws:end:WikiTextLocalImageRule:4 --><br />
<br />
<!-- ws:start:WikiTextHeadingRule:2:&lt;h1&gt; --><h1 id="toc1"><a name="Music"></a><!-- ws:end:WikiTextHeadingRule:2 -->Music</h1>
<a class="wiki_link_ext" href="http://micro.soonlabel.com/petr_parizek/3125_2916_temp_q32.ogg" rel="nofollow">Sixix</a> by Petr Parízek</body></html>