28edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>phylingual
**Imported revision 327653320 - Original comment: **
Wikispaces>guest
**Imported revision 328779090 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:phylingual|phylingual]] and made on <tt>2012-04-30 19:51:58 UTC</tt>.<br>
: This revision was by author [[User:guest|guest]] and made on <tt>2012-05-02 13:35:07 UTC</tt>.<br>
: The original revision id was <tt>327653320</tt>.<br>
: The original revision id was <tt>328779090</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 10: Line 10:


=Basic properties=  
=Basic properties=  
28edo, a multiple of both [[7edo]] and [[14edo]] (and of course [[2edo]] and [[4edo]]), has a step size of 42.857 [[cent]]s. It shares three intervals with [[12edo]]: the 300 cent minor third, the 600 cent tritone, and the 900 cent major sixth. Thus it [[tempering out|tempers out]] the [[greater diesis]] [[648_625|648:625]]. It does not however temper out the [[128_125|128:125]] [[lesser diesis]], as its major third is less than 1 cent flat (and its inversion the minor sixth less than 1 cent sharp). It has the same perfect fourth and fifth as 14edo. It also has decent approximations of several septimal intervals, of which [[9_7|9/7]] and its inversion [[14_9|14/9]] are also found in 14edo.
28edo, a multiple of both [[xenharmonic/7edo|7edo]] and [[xenharmonic/14edo|14edo]] (and of course [[xenharmonic/2edo|2edo]] and [[xenharmonic/4edo|4edo]]), has a step size of 42.857 [[xenharmonic/cent|cent]]s. It shares three intervals with [[xenharmonic/12edo|12edo]]: the 300 cent minor third, the 600 cent tritone, and the 900 cent major sixth. Thus it [[xenharmonic/tempering out|tempers out]] the [[xenharmonic/greater diesis|greater diesis]] [[xenharmonic/648_625|648:625]]. It does not however temper out the [[xenharmonic/128_125|128:125]] [[xenharmonic/lesser diesis|lesser diesis]], as its major third is less than 1 cent flat (and its inversion the minor sixth less than 1 cent sharp). It has the same perfect fourth and fifth as 14edo. It also has decent approximations of several septimal intervals, of which [[xenharmonic/9_7|9/7]] and its inversion [[xenharmonic/14_9|14/9]] are also found in 14edo.


=Subgroups=  
=Subgroups=  
28edo can approximate the [[7-limit]] subgroup 2.27.5.21 quite well, and on this subgroup it has the same commas and tunings as 84edo. The temperament corresponding to [[Semicomma family|orwell temperament]] now has a major third as generator, though as before 225/224, 1728/1715 and 6144/6125 are tempered out. The 225/224-tempered version of the [[augmented triad]] has a very low complexity, so many of them appear in the [[MOS scales]] for this temperament, which have sizes 7, 10, 13, 16, 19, 22, 25.
28edo can approximate the [[xenharmonic/7-limit|7-limit]] subgroup 2.27.5.21 quite well, and on this subgroup it has the same commas and tunings as 84edo. The temperament corresponding to [[xenharmonic/Semicomma family|orwell temperament]] now has a major third as generator, though as before 225/224, 1728/1715 and 6144/6125 are tempered out. The 225/224-tempered version of the [[xenharmonic/augmented triad|augmented triad]] has a very low complexity, so many of them appear in the [[xenharmonic/MOS scales|MOS scales]] for this temperament, which have sizes 7, 10, 13, 16, 19, 22, 25.


Another subgroup for which 28edo works quite well is 2.5.11.19.21.27.29.39.
Another subgroup for which 28edo works quite well is 2.5.11.19.21.27.29.39.


=Table of intervals=  
=Table of intervals=  
The following table compares it to potentially useful nearby [[just intervals]].
The following table compares it to potentially useful nearby [[xenharmonic/just intervals|just intervals]].


|| Step # || ET Cents || Just Interval || Just Cents || Difference (ET minus Just) ||
|| Step # || ET Cents || Just Interval || Just Cents || Difference (ET minus Just) ||
Line 54: Line 54:
||~ Periods
||~ Periods
per octave ||~ Generator ||~ Temperaments ||
per octave ||~ Generator ||~ Temperaments ||
|| 1 || 3\28 || [[Negri]] ||
|| 1 || 3\28 || [[xenharmonic/Negri|Negri]] ||
|| 1 || 5\28 || [[Machine]] ||
|| 1 || 5\28 || [[xenharmonic/Machine|Machine]]/[[Chromatic pairs#Antikythera|Antikythera]] ||
|| 1 || 9\28 || [[Würschmidt family#Worschmidt|Worschmidt]] ||
|| 1 || 9\28 || [[xenharmonic/Würschmidt family#Worschmidt|Worschmidt]] ||
|| 1 || 11\28 ||  ||
|| 1 || 11\28 ||  ||
|| 1 || 13\28 || &lt;span style="background-color: #ffffff;"&gt;[[Thuja]]&lt;/span&gt; ||
|| 1 || 13\28 || &lt;span style="background-color: #ffffff;"&gt;[[xenharmonic/Thuja|Thuja]]&lt;/span&gt; ||
||  ||  ||  ||
||  ||  ||  ||
|| 4 || 1\28 ||  ||
|| 4 || 1\28 ||  ||
|| 4 || 2\28 || [[Diminished#Demolished|Demolished]] ||
|| 4 || 2\28 || [[xenharmonic/Diminished#Demolished|Demolished]] ||
|| 4 || 3\28 ||  ||
|| 4 || 3\28 ||  ||
|| 7 || 1\28 || [[xenharmonic/Apotome family|Whitewood]] ||
|| 7 || 1\28 || [[xenharmonic/Apotome family|Whitewood]] ||
Line 67: Line 67:


=Commas=  
=Commas=  
28 EDO tempers out the following [[comma]]s. (Note: This assumes the val &lt; 28 44 65 79 97 104 |.)
28 EDO tempers out the following [[xenharmonic/comma|comma]]s. (Note: This assumes the val &lt; 28 44 65 79 97 104 |.)
||~ Comma ||~ Monzo ||~ Value (Cents) ||~ Name 1 ||~ Name 2 ||
||~ Comma ||~ Monzo ||~ Value (Cents) ||~ Name 1 ||~ Name 2 ||
||= 2187/2048 || | -11 7 &gt; ||&gt; 113.69 ||= Apotome ||=  ||
||= 2187/2048 || | -11 7 &gt; ||&gt; 113.69 ||= Apotome ||=  ||
Line 84: Line 84:


=Some scales=  
=Some scales=  
[[machine5]]
[[xenharmonic/machine5|machine5]]
[[machine6]]
[[xenharmonic/machine6|machine6]]
[[machine11]]
[[xenharmonic/machine11|machine11]]


=Compositions=  
=Compositions=  
Line 95: Line 95:
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Basic properties"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Basic properties&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Basic properties"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Basic properties&lt;/h1&gt;
  28edo, a multiple of both &lt;a class="wiki_link" href="/7edo"&gt;7edo&lt;/a&gt; and &lt;a class="wiki_link" href="/14edo"&gt;14edo&lt;/a&gt; (and of course &lt;a class="wiki_link" href="/2edo"&gt;2edo&lt;/a&gt; and &lt;a class="wiki_link" href="/4edo"&gt;4edo&lt;/a&gt;), has a step size of 42.857 &lt;a class="wiki_link" href="/cent"&gt;cent&lt;/a&gt;s. It shares three intervals with &lt;a class="wiki_link" href="/12edo"&gt;12edo&lt;/a&gt;: the 300 cent minor third, the 600 cent tritone, and the 900 cent major sixth. Thus it &lt;a class="wiki_link" href="/tempering%20out"&gt;tempers out&lt;/a&gt; the &lt;a class="wiki_link" href="/greater%20diesis"&gt;greater diesis&lt;/a&gt; &lt;a class="wiki_link" href="/648_625"&gt;648:625&lt;/a&gt;. It does not however temper out the &lt;a class="wiki_link" href="/128_125"&gt;128:125&lt;/a&gt; &lt;a class="wiki_link" href="/lesser%20diesis"&gt;lesser diesis&lt;/a&gt;, as its major third is less than 1 cent flat (and its inversion the minor sixth less than 1 cent sharp). It has the same perfect fourth and fifth as 14edo. It also has decent approximations of several septimal intervals, of which &lt;a class="wiki_link" href="/9_7"&gt;9/7&lt;/a&gt; and its inversion &lt;a class="wiki_link" href="/14_9"&gt;14/9&lt;/a&gt; are also found in 14edo.&lt;br /&gt;
  28edo, a multiple of both &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/7edo"&gt;7edo&lt;/a&gt; and &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/14edo"&gt;14edo&lt;/a&gt; (and of course &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/2edo"&gt;2edo&lt;/a&gt; and &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/4edo"&gt;4edo&lt;/a&gt;), has a step size of 42.857 &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/cent"&gt;cent&lt;/a&gt;s. It shares three intervals with &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/12edo"&gt;12edo&lt;/a&gt;: the 300 cent minor third, the 600 cent tritone, and the 900 cent major sixth. Thus it &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/tempering%20out"&gt;tempers out&lt;/a&gt; the &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/greater%20diesis"&gt;greater diesis&lt;/a&gt; &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/648_625"&gt;648:625&lt;/a&gt;. It does not however temper out the &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/128_125"&gt;128:125&lt;/a&gt; &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/lesser%20diesis"&gt;lesser diesis&lt;/a&gt;, as its major third is less than 1 cent flat (and its inversion the minor sixth less than 1 cent sharp). It has the same perfect fourth and fifth as 14edo. It also has decent approximations of several septimal intervals, of which &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/9_7"&gt;9/7&lt;/a&gt; and its inversion &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/14_9"&gt;14/9&lt;/a&gt; are also found in 14edo.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="Subgroups"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Subgroups&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="Subgroups"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Subgroups&lt;/h1&gt;
  28edo can approximate the &lt;a class="wiki_link" href="/7-limit"&gt;7-limit&lt;/a&gt; subgroup 2.27.5.21 quite well, and on this subgroup it has the same commas and tunings as 84edo. The temperament corresponding to &lt;a class="wiki_link" href="/Semicomma%20family"&gt;orwell temperament&lt;/a&gt; now has a major third as generator, though as before 225/224, 1728/1715 and 6144/6125 are tempered out. The 225/224-tempered version of the &lt;a class="wiki_link" href="/augmented%20triad"&gt;augmented triad&lt;/a&gt; has a very low complexity, so many of them appear in the &lt;a class="wiki_link" href="/MOS%20scales"&gt;MOS scales&lt;/a&gt; for this temperament, which have sizes 7, 10, 13, 16, 19, 22, 25.&lt;br /&gt;
  28edo can approximate the &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/7-limit"&gt;7-limit&lt;/a&gt; subgroup 2.27.5.21 quite well, and on this subgroup it has the same commas and tunings as 84edo. The temperament corresponding to &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Semicomma%20family"&gt;orwell temperament&lt;/a&gt; now has a major third as generator, though as before 225/224, 1728/1715 and 6144/6125 are tempered out. The 225/224-tempered version of the &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/augmented%20triad"&gt;augmented triad&lt;/a&gt; has a very low complexity, so many of them appear in the &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOS%20scales"&gt;MOS scales&lt;/a&gt; for this temperament, which have sizes 7, 10, 13, 16, 19, 22, 25.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Another subgroup for which 28edo works quite well is 2.5.11.19.21.27.29.39.&lt;br /&gt;
Another subgroup for which 28edo works quite well is 2.5.11.19.21.27.29.39.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc2"&gt;&lt;a name="Table of intervals"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;Table of intervals&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc2"&gt;&lt;a name="Table of intervals"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;Table of intervals&lt;/h1&gt;
  The following table compares it to potentially useful nearby &lt;a class="wiki_link" href="/just%20intervals"&gt;just intervals&lt;/a&gt;.&lt;br /&gt;
  The following table compares it to potentially useful nearby &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/just%20intervals"&gt;just intervals&lt;/a&gt;.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;


Line 489: Line 489:
         &lt;td&gt;3\28&lt;br /&gt;
         &lt;td&gt;3\28&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="/Negri"&gt;Negri&lt;/a&gt;&lt;br /&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Negri"&gt;Negri&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 497: Line 497:
         &lt;td&gt;5\28&lt;br /&gt;
         &lt;td&gt;5\28&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="/Machine"&gt;Machine&lt;/a&gt;&lt;br /&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Machine"&gt;Machine&lt;/a&gt;/&lt;a class="wiki_link" href="/Chromatic%20pairs#Antikythera"&gt;Antikythera&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 505: Line 505:
         &lt;td&gt;9\28&lt;br /&gt;
         &lt;td&gt;9\28&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="/W%C3%BCrschmidt%20family#Worschmidt"&gt;Worschmidt&lt;/a&gt;&lt;br /&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/W%C3%BCrschmidt%20family#Worschmidt"&gt;Worschmidt&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 521: Line 521:
         &lt;td&gt;13\28&lt;br /&gt;
         &lt;td&gt;13\28&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;span style="background-color: #ffffff;"&gt;&lt;a class="wiki_link" href="/Thuja"&gt;Thuja&lt;/a&gt;&lt;/span&gt;&lt;br /&gt;
         &lt;td&gt;&lt;span style="background-color: #ffffff;"&gt;&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Thuja"&gt;Thuja&lt;/a&gt;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 545: Line 545:
         &lt;td&gt;2\28&lt;br /&gt;
         &lt;td&gt;2\28&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="/Diminished#Demolished"&gt;Demolished&lt;/a&gt;&lt;br /&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Diminished#Demolished"&gt;Demolished&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 569: Line 569:
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc4"&gt;&lt;a name="Commas"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;Commas&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc4"&gt;&lt;a name="Commas"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;Commas&lt;/h1&gt;
  28 EDO tempers out the following &lt;a class="wiki_link" href="/comma"&gt;comma&lt;/a&gt;s. (Note: This assumes the val &amp;lt; 28 44 65 79 97 104 |.)&lt;br /&gt;
  28 EDO tempers out the following &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/comma"&gt;comma&lt;/a&gt;s. (Note: This assumes the val &amp;lt; 28 44 65 79 97 104 |.)&lt;br /&gt;




Line 745: Line 745:
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:10:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc5"&gt;&lt;a name="Some scales"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:10 --&gt;Some scales&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:10:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc5"&gt;&lt;a name="Some scales"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:10 --&gt;Some scales&lt;/h1&gt;
  &lt;a class="wiki_link" href="/machine5"&gt;machine5&lt;/a&gt;&lt;br /&gt;
  &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/machine5"&gt;machine5&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link" href="/machine6"&gt;machine6&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/machine6"&gt;machine6&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link" href="/machine11"&gt;machine11&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/machine11"&gt;machine11&lt;/a&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:12:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc6"&gt;&lt;a name="Compositions"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:12 --&gt;Compositions&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:12:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc6"&gt;&lt;a name="Compositions"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:12 --&gt;Compositions&lt;/h1&gt;
  &lt;a class="wiki_link_ext" href="http://www.youtube.com/watch?v=26UpCbrb3mE" rel="nofollow"&gt;28 tone Prelude&lt;/a&gt; by Kosmorksy&lt;/body&gt;&lt;/html&gt;</pre></div>
  &lt;a class="wiki_link_ext" href="http://www.youtube.com/watch?v=26UpCbrb3mE" rel="nofollow"&gt;28 tone Prelude&lt;/a&gt; by Kosmorksy&lt;/body&gt;&lt;/html&gt;</pre></div>

Revision as of 13:35, 2 May 2012

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author guest and made on 2012-05-02 13:35:07 UTC.
The original revision id was 328779090.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

[[toc|flat]]
----

=Basic properties= 
28edo, a multiple of both [[xenharmonic/7edo|7edo]] and [[xenharmonic/14edo|14edo]] (and of course [[xenharmonic/2edo|2edo]] and [[xenharmonic/4edo|4edo]]), has a step size of 42.857 [[xenharmonic/cent|cent]]s. It shares three intervals with [[xenharmonic/12edo|12edo]]: the 300 cent minor third, the 600 cent tritone, and the 900 cent major sixth. Thus it [[xenharmonic/tempering out|tempers out]] the [[xenharmonic/greater diesis|greater diesis]] [[xenharmonic/648_625|648:625]]. It does not however temper out the [[xenharmonic/128_125|128:125]] [[xenharmonic/lesser diesis|lesser diesis]], as its major third is less than 1 cent flat (and its inversion the minor sixth less than 1 cent sharp). It has the same perfect fourth and fifth as 14edo. It also has decent approximations of several septimal intervals, of which [[xenharmonic/9_7|9/7]] and its inversion [[xenharmonic/14_9|14/9]] are also found in 14edo.

=Subgroups= 
28edo can approximate the [[xenharmonic/7-limit|7-limit]] subgroup 2.27.5.21 quite well, and on this subgroup it has the same commas and tunings as 84edo. The temperament corresponding to [[xenharmonic/Semicomma family|orwell temperament]] now has a major third as generator, though as before 225/224, 1728/1715 and 6144/6125 are tempered out. The 225/224-tempered version of the [[xenharmonic/augmented triad|augmented triad]] has a very low complexity, so many of them appear in the [[xenharmonic/MOS scales|MOS scales]] for this temperament, which have sizes 7, 10, 13, 16, 19, 22, 25.

Another subgroup for which 28edo works quite well is 2.5.11.19.21.27.29.39.

=Table of intervals= 
The following table compares it to potentially useful nearby [[xenharmonic/just intervals|just intervals]].

|| Step # || ET Cents || Just Interval || Just Cents || Difference (ET minus Just) ||
||   ||   ||   ||   ||   ||
|| 1 || 42.86 ||   ||   ||   ||
|| 2 || 85.71 || 21:20 || 84.47 || 1.24 ||
|| 3 || 128.57 || 14:13 || 128.30 || 0.27 ||
|| 4 || 171.43 || 11:10 || 165.00 || 6.43 ||
|| 5 || 214.29 || 17:15 || 216.69 || -2.40 ||
|| 6 || 257.14 || 7:6 || 266.87 || -9.73 ||
|| 7 || 300 || 6:5 || 315.64 || -15.64 ||
|| 8 || 342.86 || 11:9 || 347.41 || -4.55 ||
|| 9 || 385.71 || 5:4 || 386.31 || -0.60 ||
|| 10 || 428.57 || 9:7 || 435.08 || -6.51 ||
|| 11 || 471.43 || 21:16 || 470.78 || 0.65 ||
|| 12 || 514.29 || 4:3 || 498.04 || 16.25 ||
|| 13 || 557.14 || 11:8 || 551.32 || 5.82 ||
|| 14 || 600 || 7:5 || 582.51 || 17.49 ||
|| 15 || 642.86 || 16:11 || 648.68 || -5.82 ||
|| 16 || 685.71 || 3:2 || 701.96 || -16.25 ||
|| 17 || 728.57 || 32:21 || 729.22 || -0.65 ||
|| 18 || 771.43 || 14:9 || 764.92 || 6.51 ||
|| 19 || 814.29 || 5:8 || 813.68 || 0.61 ||
|| 20 || 857.14 || 18:11 || 852.59 || 4.55 ||
|| 21 || 900 || 5:3 || 884.36 || 15.64 ||
|| 22 || 942.86 || 12:7 || 933.13 || 9.73 ||
|| 23 || 985.71 || 30:17 || 983.31 || 2.40 ||
|| 24 || 1028.57 || 20:11 || 1035.00 || -6.43 ||
|| 25 || 1071.42 || 13:7 || 1071.70 || -0.27 ||
|| 26 || 1114.29 || 40:21 || 1115.53 || -1.24 ||
|| 27 || 1157.14 ||   ||   ||   ||
|| 28 || 1200 || 2:1 || 1200 || 0 ||
=<span style="background-color: #ffffff;">Rank two temperaments</span>= 

||~ Periods
per octave ||~ Generator ||~ Temperaments ||
|| 1 || 3\28 || [[xenharmonic/Negri|Negri]] ||
|| 1 || 5\28 || [[xenharmonic/Machine|Machine]]/[[Chromatic pairs#Antikythera|Antikythera]] ||
|| 1 || 9\28 || [[xenharmonic/Würschmidt family#Worschmidt|Worschmidt]] ||
|| 1 || 11\28 ||   ||
|| 1 || 13\28 || <span style="background-color: #ffffff;">[[xenharmonic/Thuja|Thuja]]</span> ||
||   ||   ||   ||
|| 4 || 1\28 ||   ||
|| 4 || 2\28 || [[xenharmonic/Diminished#Demolished|Demolished]] ||
|| 4 || 3\28 ||   ||
|| 7 || 1\28 || [[xenharmonic/Apotome family|Whitewood]] ||


=Commas= 
28 EDO tempers out the following [[xenharmonic/comma|comma]]s. (Note: This assumes the val < 28 44 65 79 97 104 |.)
||~ Comma ||~ Monzo ||~ Value (Cents) ||~ Name 1 ||~ Name 2 ||
||= 2187/2048 || | -11 7 > ||> 113.69 ||= Apotome ||=   ||
||= 648/625 || | 3 4 -4 > ||> 62.57 ||= Major Diesis ||= Diminished Comma ||
||= 16875/16384 || | -14 3 4 > ||> 51.12 ||= Negri Comma ||= Double Augmentation Diesis ||
||= 393216/390625 || | 17 1 -8 > ||> 11.45 ||= Wuerschmidt Comma ||=   ||
||= 36/35 || | 2 2 -1 -1 > ||> 48.77 ||= Septimal Quarter Tone ||=   ||
||= 50/49 || | 1 0 2 -2 > ||> 34.98 ||= Tritonic Diesis ||= Jubilisma ||
||= 3125/3087 || | 0 -2 5 -3 > ||> 21.18 ||= Gariboh ||=   ||
||= 126/125 || | 1 2 -3 1 > ||> 13.79 ||= Septimal Semicomma ||= Starling Comma ||
||= 65625/65536 || | -16 1 5 1 > ||> 2.35 ||= Horwell ||=   ||
||= 394839/394762 || | 47 -7 -7 -7 > ||> 0.34 ||= Akjaysma ||= 5\7 Octave Comma ||
||= 176/175 || | 4 0 -2 -1 1 > ||> 9.86 ||= Valinorsma ||=   ||
||= 441/440 || | -3 2 -1 2 -1 > ||> 3.93 ||= Werckisma ||=   ||
||= 4000/3993 || | 5 -1 3 0 -3 > ||> 3.03 ||= Wizardharry ||=   ||

=Some scales= 
[[xenharmonic/machine5|machine5]]
[[xenharmonic/machine6|machine6]]
[[xenharmonic/machine11|machine11]]

=Compositions= 
[[http://www.youtube.com/watch?v=26UpCbrb3mE|28 tone Prelude]] by Kosmorksy

Original HTML content:

<html><head><title>28edo</title></head><body><!-- ws:start:WikiTextTocRule:14:&lt;img id=&quot;wikitext@@toc@@flat&quot; class=&quot;WikiMedia WikiMediaTocFlat&quot; title=&quot;Table of Contents&quot; src=&quot;/site/embedthumbnail/toc/flat?w=100&amp;h=16&quot;/&gt; --><!-- ws:end:WikiTextTocRule:14 --><!-- ws:start:WikiTextTocRule:15: --><a href="#Basic properties">Basic properties</a><!-- ws:end:WikiTextTocRule:15 --><!-- ws:start:WikiTextTocRule:16: --> | <a href="#Subgroups">Subgroups</a><!-- ws:end:WikiTextTocRule:16 --><!-- ws:start:WikiTextTocRule:17: --> | <a href="#Table of intervals">Table of intervals</a><!-- ws:end:WikiTextTocRule:17 --><!-- ws:start:WikiTextTocRule:18: --> | <a href="#Rank two temperaments">Rank two temperaments</a><!-- ws:end:WikiTextTocRule:18 --><!-- ws:start:WikiTextTocRule:19: --> | <a href="#Commas">Commas</a><!-- ws:end:WikiTextTocRule:19 --><!-- ws:start:WikiTextTocRule:20: --> | <a href="#Some scales">Some scales</a><!-- ws:end:WikiTextTocRule:20 --><!-- ws:start:WikiTextTocRule:21: --> | <a href="#Compositions">Compositions</a><!-- ws:end:WikiTextTocRule:21 --><!-- ws:start:WikiTextTocRule:22: -->
<!-- ws:end:WikiTextTocRule:22 --><hr />
<br />
<!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Basic properties"></a><!-- ws:end:WikiTextHeadingRule:0 -->Basic properties</h1>
 28edo, a multiple of both <a class="wiki_link" href="http://xenharmonic.wikispaces.com/7edo">7edo</a> and <a class="wiki_link" href="http://xenharmonic.wikispaces.com/14edo">14edo</a> (and of course <a class="wiki_link" href="http://xenharmonic.wikispaces.com/2edo">2edo</a> and <a class="wiki_link" href="http://xenharmonic.wikispaces.com/4edo">4edo</a>), has a step size of 42.857 <a class="wiki_link" href="http://xenharmonic.wikispaces.com/cent">cent</a>s. It shares three intervals with <a class="wiki_link" href="http://xenharmonic.wikispaces.com/12edo">12edo</a>: the 300 cent minor third, the 600 cent tritone, and the 900 cent major sixth. Thus it <a class="wiki_link" href="http://xenharmonic.wikispaces.com/tempering%20out">tempers out</a> the <a class="wiki_link" href="http://xenharmonic.wikispaces.com/greater%20diesis">greater diesis</a> <a class="wiki_link" href="http://xenharmonic.wikispaces.com/648_625">648:625</a>. It does not however temper out the <a class="wiki_link" href="http://xenharmonic.wikispaces.com/128_125">128:125</a> <a class="wiki_link" href="http://xenharmonic.wikispaces.com/lesser%20diesis">lesser diesis</a>, as its major third is less than 1 cent flat (and its inversion the minor sixth less than 1 cent sharp). It has the same perfect fourth and fifth as 14edo. It also has decent approximations of several septimal intervals, of which <a class="wiki_link" href="http://xenharmonic.wikispaces.com/9_7">9/7</a> and its inversion <a class="wiki_link" href="http://xenharmonic.wikispaces.com/14_9">14/9</a> are also found in 14edo.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:2:&lt;h1&gt; --><h1 id="toc1"><a name="Subgroups"></a><!-- ws:end:WikiTextHeadingRule:2 -->Subgroups</h1>
 28edo can approximate the <a class="wiki_link" href="http://xenharmonic.wikispaces.com/7-limit">7-limit</a> subgroup 2.27.5.21 quite well, and on this subgroup it has the same commas and tunings as 84edo. The temperament corresponding to <a class="wiki_link" href="http://xenharmonic.wikispaces.com/Semicomma%20family">orwell temperament</a> now has a major third as generator, though as before 225/224, 1728/1715 and 6144/6125 are tempered out. The 225/224-tempered version of the <a class="wiki_link" href="http://xenharmonic.wikispaces.com/augmented%20triad">augmented triad</a> has a very low complexity, so many of them appear in the <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOS%20scales">MOS scales</a> for this temperament, which have sizes 7, 10, 13, 16, 19, 22, 25.<br />
<br />
Another subgroup for which 28edo works quite well is 2.5.11.19.21.27.29.39.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:4:&lt;h1&gt; --><h1 id="toc2"><a name="Table of intervals"></a><!-- ws:end:WikiTextHeadingRule:4 -->Table of intervals</h1>
 The following table compares it to potentially useful nearby <a class="wiki_link" href="http://xenharmonic.wikispaces.com/just%20intervals">just intervals</a>.<br />
<br />


<table class="wiki_table">
    <tr>
        <td>Step #<br />
</td>
        <td>ET Cents<br />
</td>
        <td>Just Interval<br />
</td>
        <td>Just Cents<br />
</td>
        <td>Difference (ET minus Just)<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>42.86<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>85.71<br />
</td>
        <td>21:20<br />
</td>
        <td>84.47<br />
</td>
        <td>1.24<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>128.57<br />
</td>
        <td>14:13<br />
</td>
        <td>128.30<br />
</td>
        <td>0.27<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>171.43<br />
</td>
        <td>11:10<br />
</td>
        <td>165.00<br />
</td>
        <td>6.43<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>214.29<br />
</td>
        <td>17:15<br />
</td>
        <td>216.69<br />
</td>
        <td>-2.40<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>257.14<br />
</td>
        <td>7:6<br />
</td>
        <td>266.87<br />
</td>
        <td>-9.73<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>300<br />
</td>
        <td>6:5<br />
</td>
        <td>315.64<br />
</td>
        <td>-15.64<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>342.86<br />
</td>
        <td>11:9<br />
</td>
        <td>347.41<br />
</td>
        <td>-4.55<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>385.71<br />
</td>
        <td>5:4<br />
</td>
        <td>386.31<br />
</td>
        <td>-0.60<br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td>428.57<br />
</td>
        <td>9:7<br />
</td>
        <td>435.08<br />
</td>
        <td>-6.51<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td>471.43<br />
</td>
        <td>21:16<br />
</td>
        <td>470.78<br />
</td>
        <td>0.65<br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td>514.29<br />
</td>
        <td>4:3<br />
</td>
        <td>498.04<br />
</td>
        <td>16.25<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td>557.14<br />
</td>
        <td>11:8<br />
</td>
        <td>551.32<br />
</td>
        <td>5.82<br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td>600<br />
</td>
        <td>7:5<br />
</td>
        <td>582.51<br />
</td>
        <td>17.49<br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td>642.86<br />
</td>
        <td>16:11<br />
</td>
        <td>648.68<br />
</td>
        <td>-5.82<br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td>685.71<br />
</td>
        <td>3:2<br />
</td>
        <td>701.96<br />
</td>
        <td>-16.25<br />
</td>
    </tr>
    <tr>
        <td>17<br />
</td>
        <td>728.57<br />
</td>
        <td>32:21<br />
</td>
        <td>729.22<br />
</td>
        <td>-0.65<br />
</td>
    </tr>
    <tr>
        <td>18<br />
</td>
        <td>771.43<br />
</td>
        <td>14:9<br />
</td>
        <td>764.92<br />
</td>
        <td>6.51<br />
</td>
    </tr>
    <tr>
        <td>19<br />
</td>
        <td>814.29<br />
</td>
        <td>5:8<br />
</td>
        <td>813.68<br />
</td>
        <td>0.61<br />
</td>
    </tr>
    <tr>
        <td>20<br />
</td>
        <td>857.14<br />
</td>
        <td>18:11<br />
</td>
        <td>852.59<br />
</td>
        <td>4.55<br />
</td>
    </tr>
    <tr>
        <td>21<br />
</td>
        <td>900<br />
</td>
        <td>5:3<br />
</td>
        <td>884.36<br />
</td>
        <td>15.64<br />
</td>
    </tr>
    <tr>
        <td>22<br />
</td>
        <td>942.86<br />
</td>
        <td>12:7<br />
</td>
        <td>933.13<br />
</td>
        <td>9.73<br />
</td>
    </tr>
    <tr>
        <td>23<br />
</td>
        <td>985.71<br />
</td>
        <td>30:17<br />
</td>
        <td>983.31<br />
</td>
        <td>2.40<br />
</td>
    </tr>
    <tr>
        <td>24<br />
</td>
        <td>1028.57<br />
</td>
        <td>20:11<br />
</td>
        <td>1035.00<br />
</td>
        <td>-6.43<br />
</td>
    </tr>
    <tr>
        <td>25<br />
</td>
        <td>1071.42<br />
</td>
        <td>13:7<br />
</td>
        <td>1071.70<br />
</td>
        <td>-0.27<br />
</td>
    </tr>
    <tr>
        <td>26<br />
</td>
        <td>1114.29<br />
</td>
        <td>40:21<br />
</td>
        <td>1115.53<br />
</td>
        <td>-1.24<br />
</td>
    </tr>
    <tr>
        <td>27<br />
</td>
        <td>1157.14<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>28<br />
</td>
        <td>1200<br />
</td>
        <td>2:1<br />
</td>
        <td>1200<br />
</td>
        <td>0<br />
</td>
    </tr>
</table>

<!-- ws:start:WikiTextHeadingRule:6:&lt;h1&gt; --><h1 id="toc3"><a name="Rank two temperaments"></a><!-- ws:end:WikiTextHeadingRule:6 --><span style="background-color: #ffffff;">Rank two temperaments</span></h1>
 <br />


<table class="wiki_table">
    <tr>
        <th>Periods<br />
per octave<br />
</th>
        <th>Generator<br />
</th>
        <th>Temperaments<br />
</th>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>3\28<br />
</td>
        <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Negri">Negri</a><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>5\28<br />
</td>
        <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Machine">Machine</a>/<a class="wiki_link" href="/Chromatic%20pairs#Antikythera">Antikythera</a><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>9\28<br />
</td>
        <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/W%C3%BCrschmidt%20family#Worschmidt">Worschmidt</a><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>11\28<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>13\28<br />
</td>
        <td><span style="background-color: #ffffff;"><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Thuja">Thuja</a></span><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>1\28<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>2\28<br />
</td>
        <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Diminished#Demolished">Demolished</a><br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>3\28<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>1\28<br />
</td>
        <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Apotome%20family">Whitewood</a><br />
</td>
    </tr>
</table>

<br />
<br />
<!-- ws:start:WikiTextHeadingRule:8:&lt;h1&gt; --><h1 id="toc4"><a name="Commas"></a><!-- ws:end:WikiTextHeadingRule:8 -->Commas</h1>
 28 EDO tempers out the following <a class="wiki_link" href="http://xenharmonic.wikispaces.com/comma">comma</a>s. (Note: This assumes the val &lt; 28 44 65 79 97 104 |.)<br />


<table class="wiki_table">
    <tr>
        <th>Comma<br />
</th>
        <th>Monzo<br />
</th>
        <th>Value (Cents)<br />
</th>
        <th>Name 1<br />
</th>
        <th>Name 2<br />
</th>
    </tr>
    <tr>
        <td style="text-align: center;">2187/2048<br />
</td>
        <td>| -11 7 &gt;<br />
</td>
        <td style="text-align: right;">113.69<br />
</td>
        <td style="text-align: center;">Apotome<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">648/625<br />
</td>
        <td>| 3 4 -4 &gt;<br />
</td>
        <td style="text-align: right;">62.57<br />
</td>
        <td style="text-align: center;">Major Diesis<br />
</td>
        <td style="text-align: center;">Diminished Comma<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">16875/16384<br />
</td>
        <td>| -14 3 4 &gt;<br />
</td>
        <td style="text-align: right;">51.12<br />
</td>
        <td style="text-align: center;">Negri Comma<br />
</td>
        <td style="text-align: center;">Double Augmentation Diesis<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">393216/390625<br />
</td>
        <td>| 17 1 -8 &gt;<br />
</td>
        <td style="text-align: right;">11.45<br />
</td>
        <td style="text-align: center;">Wuerschmidt Comma<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">36/35<br />
</td>
        <td>| 2 2 -1 -1 &gt;<br />
</td>
        <td style="text-align: right;">48.77<br />
</td>
        <td style="text-align: center;">Septimal Quarter Tone<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">50/49<br />
</td>
        <td>| 1 0 2 -2 &gt;<br />
</td>
        <td style="text-align: right;">34.98<br />
</td>
        <td style="text-align: center;">Tritonic Diesis<br />
</td>
        <td style="text-align: center;">Jubilisma<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">3125/3087<br />
</td>
        <td>| 0 -2 5 -3 &gt;<br />
</td>
        <td style="text-align: right;">21.18<br />
</td>
        <td style="text-align: center;">Gariboh<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">126/125<br />
</td>
        <td>| 1 2 -3 1 &gt;<br />
</td>
        <td style="text-align: right;">13.79<br />
</td>
        <td style="text-align: center;">Septimal Semicomma<br />
</td>
        <td style="text-align: center;">Starling Comma<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">65625/65536<br />
</td>
        <td>| -16 1 5 1 &gt;<br />
</td>
        <td style="text-align: right;">2.35<br />
</td>
        <td style="text-align: center;">Horwell<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">394839/394762<br />
</td>
        <td>| 47 -7 -7 -7 &gt;<br />
</td>
        <td style="text-align: right;">0.34<br />
</td>
        <td style="text-align: center;">Akjaysma<br />
</td>
        <td style="text-align: center;">5\7 Octave Comma<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">176/175<br />
</td>
        <td>| 4 0 -2 -1 1 &gt;<br />
</td>
        <td style="text-align: right;">9.86<br />
</td>
        <td style="text-align: center;">Valinorsma<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">441/440<br />
</td>
        <td>| -3 2 -1 2 -1 &gt;<br />
</td>
        <td style="text-align: right;">3.93<br />
</td>
        <td style="text-align: center;">Werckisma<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">4000/3993<br />
</td>
        <td>| 5 -1 3 0 -3 &gt;<br />
</td>
        <td style="text-align: right;">3.03<br />
</td>
        <td style="text-align: center;">Wizardharry<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
</table>

<br />
<!-- ws:start:WikiTextHeadingRule:10:&lt;h1&gt; --><h1 id="toc5"><a name="Some scales"></a><!-- ws:end:WikiTextHeadingRule:10 -->Some scales</h1>
 <a class="wiki_link" href="http://xenharmonic.wikispaces.com/machine5">machine5</a><br />
<a class="wiki_link" href="http://xenharmonic.wikispaces.com/machine6">machine6</a><br />
<a class="wiki_link" href="http://xenharmonic.wikispaces.com/machine11">machine11</a><br />
<br />
<!-- ws:start:WikiTextHeadingRule:12:&lt;h1&gt; --><h1 id="toc6"><a name="Compositions"></a><!-- ws:end:WikiTextHeadingRule:12 -->Compositions</h1>
 <a class="wiki_link_ext" href="http://www.youtube.com/watch?v=26UpCbrb3mE" rel="nofollow">28 tone Prelude</a> by Kosmorksy</body></html>