65edo: Difference between revisions
prime approx's, cleanup, improvement (favouring more accurate interpretation suggestions) |
the same prec is now estimated by EDO magnitude |
||
Line 7: | Line 7: | ||
65edo contains [[13edo]] as a subset. The offset between a just perfect fifth at 702 cents and the 13edo superfifth at 738.5 cents, is approximately 2 degrees of 65edo. Therefore, an instrument fretted to 13edo, with open strings tuned to 3-limit intervals such as 4/3, 3/2, 9/8, 16/9 etc, will approximate a subset of 65edo. For an example of this, see [https://soundcloud.com/andrew_heathwaite/rubble-a-xenuke-unfolded Rubble: a Xenuke Unfolded]. | 65edo contains [[13edo]] as a subset. The offset between a just perfect fifth at 702 cents and the 13edo superfifth at 738.5 cents, is approximately 2 degrees of 65edo. Therefore, an instrument fretted to 13edo, with open strings tuned to 3-limit intervals such as 4/3, 3/2, 9/8, 16/9 etc, will approximate a subset of 65edo. For an example of this, see [https://soundcloud.com/andrew_heathwaite/rubble-a-xenuke-unfolded Rubble: a Xenuke Unfolded]. | ||
{{Primes in edo|65|columns=11 | {{Primes in edo|65|columns=11}} | ||
=Intervals= | == Intervals == | ||
{| class="wikitable" | {| class="wikitable" |