26edt: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>genewardsmith
**Imported revision 250562236 - Original comment: **
 
Wikispaces>genewardsmith
**Imported revision 250569532 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-09-03 23:32:41 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-09-04 01:23:33 UTC</tt>.<br>
: The original revision id was <tt>250562236</tt>.<br>
: The original revision id was <tt>250569532</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">The 26 equal division of 3 (the tritave), divides it into 26 equal parts of 73.152 cents each. It is contorted in the 7-limit, tempering out the same commas, 245/243 and 3125/3087, as [[13edt]]. In the 11-limit it tempers out 125/121 and 3087/3025, in the 13-limit 175/169, 147/143, and 847/845, and in the 17-limit 119/117. It is the seventh [[The Riemann Zeta Function and Tuning#Removing prime|tritave zeta peak tuning]].</pre></div>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">The 26 equal division of 3 (the tritave), divides it into 26 equal parts of 73.152 cents each. It is contorted in the 7-limit, tempering out the same commas, 245/243 and 3125/3087, as [[13edt]]. In the 11-limit it tempers out 125/121 and 3087/3025, in the 13-limit 175/169, 147/143, and 847/845, and in the 17-limit 119/117. It is the seventh [[The Riemann Zeta Function and Tuning#Removing prime|zeta peak tritave division]].</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;26edt&lt;/title&gt;&lt;/head&gt;&lt;body&gt;The 26 equal division of 3 (the tritave), divides it into 26 equal parts of 73.152 cents each. It is contorted in the 7-limit, tempering out the same commas, 245/243 and 3125/3087, as &lt;a class="wiki_link" href="/13edt"&gt;13edt&lt;/a&gt;. In the 11-limit it tempers out 125/121 and 3087/3025, in the 13-limit 175/169, 147/143, and 847/845, and in the 17-limit 119/117. It is the seventh &lt;a class="wiki_link" href="/The%20Riemann%20Zeta%20Function%20and%20Tuning#Removing prime"&gt;tritave zeta peak tuning&lt;/a&gt;.&lt;/body&gt;&lt;/html&gt;</pre></div>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;26edt&lt;/title&gt;&lt;/head&gt;&lt;body&gt;The 26 equal division of 3 (the tritave), divides it into 26 equal parts of 73.152 cents each. It is contorted in the 7-limit, tempering out the same commas, 245/243 and 3125/3087, as &lt;a class="wiki_link" href="/13edt"&gt;13edt&lt;/a&gt;. In the 11-limit it tempers out 125/121 and 3087/3025, in the 13-limit 175/169, 147/143, and 847/845, and in the 17-limit 119/117. It is the seventh &lt;a class="wiki_link" href="/The%20Riemann%20Zeta%20Function%20and%20Tuning#Removing prime"&gt;zeta peak tritave division&lt;/a&gt;.&lt;/body&gt;&lt;/html&gt;</pre></div>

Revision as of 01:23, 4 September 2011

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author genewardsmith and made on 2011-09-04 01:23:33 UTC.
The original revision id was 250569532.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

The 26 equal division of 3 (the tritave), divides it into 26 equal parts of 73.152 cents each. It is contorted in the 7-limit, tempering out the same commas, 245/243 and 3125/3087, as [[13edt]]. In the 11-limit it tempers out 125/121 and 3087/3025, in the 13-limit 175/169, 147/143, and 847/845, and in the 17-limit 119/117. It is the seventh [[The Riemann Zeta Function and Tuning#Removing prime|zeta peak tritave division]].

Original HTML content:

<html><head><title>26edt</title></head><body>The 26 equal division of 3 (the tritave), divides it into 26 equal parts of 73.152 cents each. It is contorted in the 7-limit, tempering out the same commas, 245/243 and 3125/3087, as <a class="wiki_link" href="/13edt">13edt</a>. In the 11-limit it tempers out 125/121 and 3087/3025, in the 13-limit 175/169, 147/143, and 847/845, and in the 17-limit 119/117. It is the seventh <a class="wiki_link" href="/The%20Riemann%20Zeta%20Function%20and%20Tuning#Removing prime">zeta peak tritave division</a>.</body></html>