25edo: Difference between revisions
Jump to navigation
Jump to search
Wikispaces>Kosmorsky **Imported revision 314427540 - Original comment: ** |
Wikispaces>phylingual **Imported revision 342024146 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User: | : This revision was by author [[User:phylingual|phylingual]] and made on <tt>2012-06-02 09:30:55 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>342024146</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
Line 9: | Line 9: | ||
=<span style="color: #006b2e;">25 tone equal temperament</span>= | =<span style="color: #006b2e;">25 tone equal temperament</span>= | ||
25EDO divides the [[octave]] in 25 equal steps of exact size 48 [[cent]]s each. It is a good way to tune the [[Blackwood temperament]], which takes the very sharp fifths of [[5EDO]] as a given, tempers out 28/27 and 49/48, and attempts to optimize the tunings for 5 ([[5_4|5/4]]) and 7 ([[7_4|7/4]]?). | 25EDO divides the [[octave]] in 25 equal steps of exact size 48 [[cent]]s each. It is a good way to tune the [[Blackwood temperament]], which takes the very sharp fifths of [[5EDO]] as a given, tempers out 28/27 and 49/48, and attempts to optimize the tunings for 5 ([[5_4|5/4]]) and 7 ([[7_4|7/4]]?). It also tunes sixix temperament with a sharp fifth. | ||
25EDO has fifths 18 cents sharp, but its major thirds are excellent and its 7/4 is acceptable. It therefore makes sense to use it as a 2.5.7 [[Just intonation subgroups|subgroup]] tuning. Looking just at 2, 5, and 7, it equates five [[8_7|8/7]]s with the octave, and so tempers out (8/7)^5 / 2 = 16807/16384. It also equates a [[128_125|128/125]] [[diesis]] and two [[septimal tritones]] of [[7_5|7/5]] with the octave, and hence tempers out 3136/3125. If we want to temper out both of these and also have decent fifths, the obvious solution is [[50EDO]]. And alternative fifth, 14\25, which is 672 cents, provides an alternative very flat fifth which can be used for [[mavila]] temperament. | 25EDO has fifths 18 cents sharp, but its major thirds are excellent and its 7/4 is acceptable. It therefore makes sense to use it as a 2.5.7 [[Just intonation subgroups|subgroup]] tuning. Looking just at 2, 5, and 7, it equates five [[8_7|8/7]]s with the octave, and so tempers out (8/7)^5 / 2 = 16807/16384. It also equates a [[128_125|128/125]] [[diesis]] and two [[septimal tritones]] of [[7_5|7/5]] with the octave, and hence tempers out 3136/3125. If we want to temper out both of these and also have decent fifths, the obvious solution is [[50EDO]]. And alternative fifth, 14\25, which is 672 cents, provides an alternative very flat fifth which can be used for [[mavila]] temperament. | ||
Line 17: | Line 17: | ||
=Music= | =Music= | ||
[[http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Rapoport/StudyInFives.mp3|Study in Fives]] by [[http://en.wikipedia.org/wiki/Paul_Rapoport_%28music_critic%29|Paul Rapoport]] | [[http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Rapoport/StudyInFives.mp3|Study in Fives]] by [[http://en.wikipedia.org/wiki/Paul_Rapoport_%28music_critic%29|Paul Rapoport]] | ||
[[media type="file" key="25edochorale.mid"]]Peter Kosmorsky (10/14/10, 2.5.7 subgroup, a friend responded "The <span class="il">25edo</span> canon has a nice theme, but all the harmonizations from there are laughably dissonant. I showed them to my roomie and he found it disturbing, hahaha. He had an unintentional physical reaction to it with his mouth in which his muscles did a smirk sort of thing, without him even trying to, hahaha. So, my point; this I think this 25 edo idea was an example of where tonal thinking doesn't suit the sound of the scale.") | [[media type="file" key="25edochorale.mid" width="300" height="50"]]Peter Kosmorsky (10/14/10, 2.5.7 subgroup, a friend responded "The <span class="il">25edo</span> canon has a nice theme, but all the harmonizations from there are laughably dissonant. I showed them to my roomie and he found it disturbing, hahaha. He had an unintentional physical reaction to it with his mouth in which his muscles did a smirk sort of thing, without him even trying to, hahaha. So, my point; this I think this 25 edo idea was an example of where tonal thinking doesn't suit the sound of the scale.") | ||
[[media type="file" key="25 edo prelude largo.mid"]]Peter Kosmorsky (2011, Blackwood) | [[media type="file" key="25 edo prelude largo.mid" width="300" height="50"]]Peter Kosmorsky (2011, Blackwood) | ||
=Intervals= | =Intervals= | ||
Line 83: | Line 83: | ||
<!-- ws:end:WikiTextTocRule:21 --><!-- ws:start:WikiTextHeadingRule:2:&lt;h1&gt; --><h1 id="toc0"><a name="x25 tone equal temperament"></a><!-- ws:end:WikiTextHeadingRule:2 --><span style="color: #006b2e;">25 tone equal temperament</span></h1> | <!-- ws:end:WikiTextTocRule:21 --><!-- ws:start:WikiTextHeadingRule:2:&lt;h1&gt; --><h1 id="toc0"><a name="x25 tone equal temperament"></a><!-- ws:end:WikiTextHeadingRule:2 --><span style="color: #006b2e;">25 tone equal temperament</span></h1> | ||
<br /> | <br /> | ||
25EDO divides the <a class="wiki_link" href="/octave">octave</a> in 25 equal steps of exact size 48 <a class="wiki_link" href="/cent">cent</a>s each. It is a good way to tune the <a class="wiki_link" href="/Blackwood%20temperament">Blackwood temperament</a>, which takes the very sharp fifths of <a class="wiki_link" href="/5EDO">5EDO</a> as a given, tempers out 28/27 and 49/48, and attempts to optimize the tunings for 5 (<a class="wiki_link" href="/5_4">5/4</a>) and 7 (<a class="wiki_link" href="/7_4">7/4</a>?).<br /> | 25EDO divides the <a class="wiki_link" href="/octave">octave</a> in 25 equal steps of exact size 48 <a class="wiki_link" href="/cent">cent</a>s each. It is a good way to tune the <a class="wiki_link" href="/Blackwood%20temperament">Blackwood temperament</a>, which takes the very sharp fifths of <a class="wiki_link" href="/5EDO">5EDO</a> as a given, tempers out 28/27 and 49/48, and attempts to optimize the tunings for 5 (<a class="wiki_link" href="/5_4">5/4</a>) and 7 (<a class="wiki_link" href="/7_4">7/4</a>?). It also tunes sixix temperament with a sharp fifth.<br /> | ||
<br /> | <br /> | ||
25EDO has fifths 18 cents sharp, but its major thirds are excellent and its 7/4 is acceptable. It therefore makes sense to use it as a 2.5.7 <a class="wiki_link" href="/Just%20intonation%20subgroups">subgroup</a> tuning. Looking just at 2, 5, and 7, it equates five <a class="wiki_link" href="/8_7">8/7</a>s with the octave, and so tempers out (8/7)^5 / 2 = 16807/16384. It also equates a <a class="wiki_link" href="/128_125">128/125</a> <a class="wiki_link" href="/diesis">diesis</a> and two <a class="wiki_link" href="/septimal%20tritones">septimal tritones</a> of <a class="wiki_link" href="/7_5">7/5</a> with the octave, and hence tempers out 3136/3125. If we want to temper out both of these and also have decent fifths, the obvious solution is <a class="wiki_link" href="/50EDO">50EDO</a>. And alternative fifth, 14\25, which is 672 cents, provides an alternative very flat fifth which can be used for <a class="wiki_link" href="/mavila">mavila</a> temperament.<br /> | 25EDO has fifths 18 cents sharp, but its major thirds are excellent and its 7/4 is acceptable. It therefore makes sense to use it as a 2.5.7 <a class="wiki_link" href="/Just%20intonation%20subgroups">subgroup</a> tuning. Looking just at 2, 5, and 7, it equates five <a class="wiki_link" href="/8_7">8/7</a>s with the octave, and so tempers out (8/7)^5 / 2 = 16807/16384. It also equates a <a class="wiki_link" href="/128_125">128/125</a> <a class="wiki_link" href="/diesis">diesis</a> and two <a class="wiki_link" href="/septimal%20tritones">septimal tritones</a> of <a class="wiki_link" href="/7_5">7/5</a> with the octave, and hence tempers out 3136/3125. If we want to temper out both of these and also have decent fifths, the obvious solution is <a class="wiki_link" href="/50EDO">50EDO</a>. And alternative fifth, 14\25, which is 672 cents, provides an alternative very flat fifth which can be used for <a class="wiki_link" href="/mavila">mavila</a> temperament.<br /> | ||
Line 91: | Line 91: | ||
<!-- ws:start:WikiTextHeadingRule:4:&lt;h1&gt; --><h1 id="toc1"><a name="Music"></a><!-- ws:end:WikiTextHeadingRule:4 -->Music</h1> | <!-- ws:start:WikiTextHeadingRule:4:&lt;h1&gt; --><h1 id="toc1"><a name="Music"></a><!-- ws:end:WikiTextHeadingRule:4 -->Music</h1> | ||
<a class="wiki_link_ext" href="http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Rapoport/StudyInFives.mp3" rel="nofollow">Study in Fives</a> by <a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Paul_Rapoport_%28music_critic%29" rel="nofollow">Paul Rapoport</a><br /> | <a class="wiki_link_ext" href="http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Rapoport/StudyInFives.mp3" rel="nofollow">Study in Fives</a> by <a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Paul_Rapoport_%28music_critic%29" rel="nofollow">Paul Rapoport</a><br /> | ||
<!-- ws:start:WikiTextMediaRule:0:&lt;img src=&quot;http://www.wikispaces.com/site/embedthumbnail/file-audio/25edochorale.mid?h=50&amp;w=300&quot; class=&quot;WikiMedia WikiMediaFile&quot; id=&quot;wikitext@@media@@type=&amp;quot;file&amp;quot; key=&amp;quot;25edochorale.mid&amp;quot;&quot; title=&quot;Local Media File&quot;height=&quot;50&quot; width=&quot;300&quot;/&gt; --><embed type="audio/midi" style="cursor:hand; cursor:pointer;" src="http://xenharmonic.wikispaces.com/file/view/25edochorale.mid" width="300" height="50" autoplay="false" target="myself" controller="true" loop="false" scale="aspect" bgcolor="#FFFFFF" pluginspage="http://www.apple.com/quicktime/download/"></embed><!-- ws:end:WikiTextMediaRule:0 -->Peter Kosmorsky (10/14/10, 2.5.7 subgroup, a friend responded &quot;The <span class="il">25edo</span> canon has a nice theme, but all the harmonizations from there are laughably dissonant. I showed them to my roomie and he found it disturbing, hahaha. He had an unintentional physical reaction to it with his mouth in which his muscles did a smirk sort of thing, without him even trying to, hahaha. So, my point; this I think this 25 edo idea was an example of where tonal thinking doesn't suit the sound of the scale.&quot;)<br /> | <!-- ws:start:WikiTextMediaRule:0:&lt;img src=&quot;http://www.wikispaces.com/site/embedthumbnail/file-audio/25edochorale.mid?h=50&amp;w=300&quot; class=&quot;WikiMedia WikiMediaFile&quot; id=&quot;wikitext@@media@@type=&amp;quot;file&amp;quot; key=&amp;quot;25edochorale.mid&amp;quot; width=&amp;quot;300&amp;quot; height=&amp;quot;50&amp;quot;&quot; title=&quot;Local Media File&quot;height=&quot;50&quot; width=&quot;300&quot;/&gt; --><embed type="audio/midi" style="cursor:hand; cursor:pointer;" src="http://xenharmonic.wikispaces.com/file/view/25edochorale.mid" width="300" height="50" autoplay="false" target="myself" controller="true" loop="false" scale="aspect" bgcolor="#FFFFFF" pluginspage="http://www.apple.com/quicktime/download/"></embed><!-- ws:end:WikiTextMediaRule:0 -->Peter Kosmorsky (10/14/10, 2.5.7 subgroup, a friend responded &quot;The <span class="il">25edo</span> canon has a nice theme, but all the harmonizations from there are laughably dissonant. I showed them to my roomie and he found it disturbing, hahaha. He had an unintentional physical reaction to it with his mouth in which his muscles did a smirk sort of thing, without him even trying to, hahaha. So, my point; this I think this 25 edo idea was an example of where tonal thinking doesn't suit the sound of the scale.&quot;)<br /> | ||
<!-- ws:start:WikiTextMediaRule:1:&lt;img src=&quot;http://www.wikispaces.com/site/embedthumbnail/file-audio/25%20edo%20prelude%20largo.mid?h=50&amp;w=300&quot; class=&quot;WikiMedia WikiMediaFile&quot; id=&quot;wikitext@@media@@type=&amp;quot;file&amp;quot; key=&amp;quot;25 edo prelude largo.mid&amp;quot;&quot; title=&quot;Local Media File&quot;height=&quot;50&quot; width=&quot;300&quot;/&gt; --><embed type="audio/midi" style="cursor:hand; cursor:pointer;" src="http://xenharmonic.wikispaces.com/file/view/25+edo+prelude+largo.mid" width="300" height="50" autoplay="false" target="myself" controller="true" loop="false" scale="aspect" bgcolor="#FFFFFF" pluginspage="http://www.apple.com/quicktime/download/"></embed><!-- ws:end:WikiTextMediaRule:1 -->Peter Kosmorsky (2011, Blackwood)<br /> | <!-- ws:start:WikiTextMediaRule:1:&lt;img src=&quot;http://www.wikispaces.com/site/embedthumbnail/file-audio/25%20edo%20prelude%20largo.mid?h=50&amp;w=300&quot; class=&quot;WikiMedia WikiMediaFile&quot; id=&quot;wikitext@@media@@type=&amp;quot;file&amp;quot; key=&amp;quot;25 edo prelude largo.mid&amp;quot; width=&amp;quot;300&amp;quot; height=&amp;quot;50&amp;quot;&quot; title=&quot;Local Media File&quot;height=&quot;50&quot; width=&quot;300&quot;/&gt; --><embed type="audio/midi" style="cursor:hand; cursor:pointer;" src="http://xenharmonic.wikispaces.com/file/view/25+edo+prelude+largo.mid" width="300" height="50" autoplay="false" target="myself" controller="true" loop="false" scale="aspect" bgcolor="#FFFFFF" pluginspage="http://www.apple.com/quicktime/download/"></embed><!-- ws:end:WikiTextMediaRule:1 -->Peter Kosmorsky (2011, Blackwood)<br /> | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule:6:&lt;h1&gt; --><h1 id="toc2"><a name="Intervals"></a><!-- ws:end:WikiTextHeadingRule:6 -->Intervals</h1> | <!-- ws:start:WikiTextHeadingRule:6:&lt;h1&gt; --><h1 id="toc2"><a name="Intervals"></a><!-- ws:end:WikiTextHeadingRule:6 -->Intervals</h1> |
Revision as of 09:30, 2 June 2012
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author phylingual and made on 2012-06-02 09:30:55 UTC.
- The original revision id was 342024146.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
[[toc|flat]] =<span style="color: #006b2e;">25 tone equal temperament</span>= 25EDO divides the [[octave]] in 25 equal steps of exact size 48 [[cent]]s each. It is a good way to tune the [[Blackwood temperament]], which takes the very sharp fifths of [[5EDO]] as a given, tempers out 28/27 and 49/48, and attempts to optimize the tunings for 5 ([[5_4|5/4]]) and 7 ([[7_4|7/4]]?). It also tunes sixix temperament with a sharp fifth. 25EDO has fifths 18 cents sharp, but its major thirds are excellent and its 7/4 is acceptable. It therefore makes sense to use it as a 2.5.7 [[Just intonation subgroups|subgroup]] tuning. Looking just at 2, 5, and 7, it equates five [[8_7|8/7]]s with the octave, and so tempers out (8/7)^5 / 2 = 16807/16384. It also equates a [[128_125|128/125]] [[diesis]] and two [[septimal tritones]] of [[7_5|7/5]] with the octave, and hence tempers out 3136/3125. If we want to temper out both of these and also have decent fifths, the obvious solution is [[50EDO]]. And alternative fifth, 14\25, which is 672 cents, provides an alternative very flat fifth which can be used for [[mavila]] temperament. If 5/4 and 7/4 aren't good enough, it also does 17/16 and 19/16, just like 12EDO. In fact, on the [[k*N subgroups|2*25 subgroup]] 2.9.5.7.33.39.17.19 it provides the same tuning and tempers out the same commas as 50et, which makes for wide range of harmony. =Music= [[http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Rapoport/StudyInFives.mp3|Study in Fives]] by [[http://en.wikipedia.org/wiki/Paul_Rapoport_%28music_critic%29|Paul Rapoport]] [[media type="file" key="25edochorale.mid" width="300" height="50"]]Peter Kosmorsky (10/14/10, 2.5.7 subgroup, a friend responded "The <span class="il">25edo</span> canon has a nice theme, but all the harmonizations from there are laughably dissonant. I showed them to my roomie and he found it disturbing, hahaha. He had an unintentional physical reaction to it with his mouth in which his muscles did a smirk sort of thing, without him even trying to, hahaha. So, my point; this I think this 25 edo idea was an example of where tonal thinking doesn't suit the sound of the scale.") [[media type="file" key="25 edo prelude largo.mid" width="300" height="50"]]Peter Kosmorsky (2011, Blackwood) =Intervals= || Degrees || Cents value ||= Approximate Ratios* ||= Armodue Notation || || 0 || 0 ||= 1/1 ||= 1 || || 1 || 48 ||= 33/32, 39/38, 34/33 ||= 1# || || 2 || 96 ||= 17/16, 20/19, 18/17 ||= 2b || || 3 || 144 ||= 12/11, 38/35 ||= 2 || || 4 || 192 ||= 9/8, 10/9, 19/17 ||= 2# || || 5· || 240 ||= 8/7 ||= 3b || || 6 || 288 ||= 19/16, 20/17 ||= 3 || || 7 || 336 ||= 39/32, 17/14, 40/33 ||= 3# || || 8· || 384 ||= 5/4 ||= 4b || || 9 || 432 ||= 9/7, 32/25, 50/39 ||= 4 || || 10 || 480 ||= 33/25, 25/19 ||= 4#/5b || || 11· || 528 ||= 31/21, 34/25 ||= 5 || || 12 || 576 ||= 7/5, 39/28 ||= 5# || || 13 || 624 ||= 10/7, 56/39 ||= 6b || || 14· || 672 ||= 42/31, 25/17 ||= 6 || || 15 || 720 ||= 50/33, 38/25 ||= 6# || || 16 || 768 ||= 14/9, 25/16, 39/25 ||= 7b || || 17· || 816 ||= 8/5 ||= 7 || || 18 || 864 ||= 64/39, 28/17, 33/20 ||= 7# || || 19 || 912 ||= 32/19, 17/10 ||= 8b || || 20· || 960 ||= 7/4 ||= 8 || || 21 || 1008 ||= 16/9, 9/5, 34/19 ||= 8# || || 22 || 1056 ||= 11/6, 35/19 ||= 9b || || 23 || 1104 ||= 32/17, 17/9, 19/10 ||= 9 || || 24 || 1152 ||= 33/17, 64/33, 76/39 ||= 9#/1b || || 25 || 1200 ||= 2/1 ||= 1 || *based on treating 25-EDO as a 2.9.5.7.33.39.17.19 subgroup; other approaches are possible. =Relationship to Armodue= Like 16-EDO and 23-EDO, 25-EDO contains the 9-note "Superdiatonic" scale of 7L2s (LLLsLLLLs) that is generated by a circle of heavily-flattened 3/2s (ranging in size from 5\9-EDO or 666.67 cents, to 4\7-EDO or 685.71 cents). The 25-EDO generator for this scale is the 672-cent interval. This allows 25-EDO to be used with the Armodue notation system in much the same way that 19-EDO is used with the standard diatonic notation; see the above interval chart for the Armodue names. Because the 25-EDO Armodue 6th is flatter than that of 16-EDO (the middle of the Armodue spectrum), sharps are lower in pitch than enharmonic flats. =Commas= 25 EDO tempers out the following commas. (Note: This assumes the val < 25 40 58 70 86 93 |.) ||~ Comma ||~ Monzo ||~ Value (Cents) ||~ Name 1 ||~ Name 2 ||~ Name 3 || ||= 256/243 ||< | 8 -5 > ||> 90.22 ||= Limma ||= Pythagorean Minor 2nd ||= || ||= 3125/3072 ||< | -10 -1 5 > ||> 29.61 ||= Small Diesis ||= Magic Comma ||= || ||= 6719816/6714445 ||< | 38 -2 -15 > ||> 1.38 ||= Hemithirds Comma ||= ||= || ||= 16807/16384 || | -14 0 0 5 > ||> 44.13 || || || || ||= 49/48 ||< | -4 -1 0 2 > ||> 35.70 ||= Slendro Diesis ||= ||= || ||= 64/63 ||< | 6 -2 0 -1 > ||> 27.26 ||= Septimal Comma ||= Archytas' Comma ||= Leipziger Komma || ||= 3125/3087 ||< | 0 -2 5 -3 > ||> 21.18 ||= Gariboh ||= ||= || ||= 50421/50000 ||< | -4 1 -5 5 > ||> 14.52 ||= Trimyna ||= ||= || ||= 1029/1024 ||< | -10 1 0 3 > ||> 8.43 ||= Gamelisma ||= ||= || ||= 3136/3125 ||< | 6 0 -5 2 > ||> 6.08 ||= Hemimean ||= ||= || ||= 65625/65536 ||< | -16 1 5 1 > ||> 2.35 ||= Horwell ||= ||= || ||= 100/99 ||< | 2 -2 2 0 -1 > ||> 17.40 ||= Ptolemisma ||= ||= || ||= 176/175 ||< | 4 0 -2 -1 1 > ||> 9.86 ||= Valinorsma ||= ||= || ||= 91/90 ||< | -1 -2 -1 1 0 1 > ||> 19.13 ||= Superleap ||= ||= || ||= 676/675 ||< | 2 -3 -2 0 0 2 > ||> 2.56 ||= Parizeksma ||= ||= || =A 25edo keyboard= [[image:mm25.PNG]]
Original HTML content:
<html><head><title>25edo</title></head><body><!-- ws:start:WikiTextTocRule:14:<img id="wikitext@@toc@@flat" class="WikiMedia WikiMediaTocFlat" title="Table of Contents" src="/site/embedthumbnail/toc/flat?w=100&h=16"/> --><!-- ws:end:WikiTextTocRule:14 --><!-- ws:start:WikiTextTocRule:15: --><a href="#x25 tone equal temperament">25 tone equal temperament</a><!-- ws:end:WikiTextTocRule:15 --><!-- ws:start:WikiTextTocRule:16: --> | <a href="#Music">Music</a><!-- ws:end:WikiTextTocRule:16 --><!-- ws:start:WikiTextTocRule:17: --> | <a href="#Intervals">Intervals</a><!-- ws:end:WikiTextTocRule:17 --><!-- ws:start:WikiTextTocRule:18: --> | <a href="#Relationship to Armodue">Relationship to Armodue</a><!-- ws:end:WikiTextTocRule:18 --><!-- ws:start:WikiTextTocRule:19: --> | <a href="#Commas">Commas</a><!-- ws:end:WikiTextTocRule:19 --><!-- ws:start:WikiTextTocRule:20: --> | <a href="#A 25edo keyboard">A 25edo keyboard</a><!-- ws:end:WikiTextTocRule:20 --><!-- ws:start:WikiTextTocRule:21: --> <!-- ws:end:WikiTextTocRule:21 --><!-- ws:start:WikiTextHeadingRule:2:<h1> --><h1 id="toc0"><a name="x25 tone equal temperament"></a><!-- ws:end:WikiTextHeadingRule:2 --><span style="color: #006b2e;">25 tone equal temperament</span></h1> <br /> 25EDO divides the <a class="wiki_link" href="/octave">octave</a> in 25 equal steps of exact size 48 <a class="wiki_link" href="/cent">cent</a>s each. It is a good way to tune the <a class="wiki_link" href="/Blackwood%20temperament">Blackwood temperament</a>, which takes the very sharp fifths of <a class="wiki_link" href="/5EDO">5EDO</a> as a given, tempers out 28/27 and 49/48, and attempts to optimize the tunings for 5 (<a class="wiki_link" href="/5_4">5/4</a>) and 7 (<a class="wiki_link" href="/7_4">7/4</a>?). It also tunes sixix temperament with a sharp fifth.<br /> <br /> 25EDO has fifths 18 cents sharp, but its major thirds are excellent and its 7/4 is acceptable. It therefore makes sense to use it as a 2.5.7 <a class="wiki_link" href="/Just%20intonation%20subgroups">subgroup</a> tuning. Looking just at 2, 5, and 7, it equates five <a class="wiki_link" href="/8_7">8/7</a>s with the octave, and so tempers out (8/7)^5 / 2 = 16807/16384. It also equates a <a class="wiki_link" href="/128_125">128/125</a> <a class="wiki_link" href="/diesis">diesis</a> and two <a class="wiki_link" href="/septimal%20tritones">septimal tritones</a> of <a class="wiki_link" href="/7_5">7/5</a> with the octave, and hence tempers out 3136/3125. If we want to temper out both of these and also have decent fifths, the obvious solution is <a class="wiki_link" href="/50EDO">50EDO</a>. And alternative fifth, 14\25, which is 672 cents, provides an alternative very flat fifth which can be used for <a class="wiki_link" href="/mavila">mavila</a> temperament.<br /> <br /> If 5/4 and 7/4 aren't good enough, it also does 17/16 and 19/16, just like 12EDO. In fact, on the <a class="wiki_link" href="/k%2AN%20subgroups">2*25 subgroup</a> 2.9.5.7.33.39.17.19 it provides the same tuning and tempers out the same commas as 50et, which makes for wide range of harmony.<br /> <br /> <!-- ws:start:WikiTextHeadingRule:4:<h1> --><h1 id="toc1"><a name="Music"></a><!-- ws:end:WikiTextHeadingRule:4 -->Music</h1> <a class="wiki_link_ext" href="http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Rapoport/StudyInFives.mp3" rel="nofollow">Study in Fives</a> by <a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Paul_Rapoport_%28music_critic%29" rel="nofollow">Paul Rapoport</a><br /> <!-- ws:start:WikiTextMediaRule:0:<img src="http://www.wikispaces.com/site/embedthumbnail/file-audio/25edochorale.mid?h=50&w=300" class="WikiMedia WikiMediaFile" id="wikitext@@media@@type=&quot;file&quot; key=&quot;25edochorale.mid&quot; width=&quot;300&quot; height=&quot;50&quot;" title="Local Media File"height="50" width="300"/> --><embed type="audio/midi" style="cursor:hand; cursor:pointer;" src="http://xenharmonic.wikispaces.com/file/view/25edochorale.mid" width="300" height="50" autoplay="false" target="myself" controller="true" loop="false" scale="aspect" bgcolor="#FFFFFF" pluginspage="http://www.apple.com/quicktime/download/"></embed><!-- ws:end:WikiTextMediaRule:0 -->Peter Kosmorsky (10/14/10, 2.5.7 subgroup, a friend responded "The <span class="il">25edo</span> canon has a nice theme, but all the harmonizations from there are laughably dissonant. I showed them to my roomie and he found it disturbing, hahaha. He had an unintentional physical reaction to it with his mouth in which his muscles did a smirk sort of thing, without him even trying to, hahaha. So, my point; this I think this 25 edo idea was an example of where tonal thinking doesn't suit the sound of the scale.")<br /> <!-- ws:start:WikiTextMediaRule:1:<img src="http://www.wikispaces.com/site/embedthumbnail/file-audio/25%20edo%20prelude%20largo.mid?h=50&w=300" class="WikiMedia WikiMediaFile" id="wikitext@@media@@type=&quot;file&quot; key=&quot;25 edo prelude largo.mid&quot; width=&quot;300&quot; height=&quot;50&quot;" title="Local Media File"height="50" width="300"/> --><embed type="audio/midi" style="cursor:hand; cursor:pointer;" src="http://xenharmonic.wikispaces.com/file/view/25+edo+prelude+largo.mid" width="300" height="50" autoplay="false" target="myself" controller="true" loop="false" scale="aspect" bgcolor="#FFFFFF" pluginspage="http://www.apple.com/quicktime/download/"></embed><!-- ws:end:WikiTextMediaRule:1 -->Peter Kosmorsky (2011, Blackwood)<br /> <br /> <!-- ws:start:WikiTextHeadingRule:6:<h1> --><h1 id="toc2"><a name="Intervals"></a><!-- ws:end:WikiTextHeadingRule:6 -->Intervals</h1> <br /> <table class="wiki_table"> <tr> <td>Degrees<br /> </td> <td>Cents value<br /> </td> <td style="text-align: center;">Approximate<br /> Ratios*<br /> </td> <td style="text-align: center;">Armodue<br /> Notation<br /> </td> </tr> <tr> <td>0<br /> </td> <td>0<br /> </td> <td style="text-align: center;">1/1<br /> </td> <td style="text-align: center;">1<br /> </td> </tr> <tr> <td>1<br /> </td> <td>48<br /> </td> <td style="text-align: center;">33/32, 39/38, 34/33<br /> </td> <td style="text-align: center;">1#<br /> </td> </tr> <tr> <td>2<br /> </td> <td>96<br /> </td> <td style="text-align: center;">17/16, 20/19, 18/17<br /> </td> <td style="text-align: center;">2b<br /> </td> </tr> <tr> <td>3<br /> </td> <td>144<br /> </td> <td style="text-align: center;">12/11, 38/35<br /> </td> <td style="text-align: center;">2<br /> </td> </tr> <tr> <td>4<br /> </td> <td>192<br /> </td> <td style="text-align: center;">9/8, 10/9, 19/17<br /> </td> <td style="text-align: center;">2#<br /> </td> </tr> <tr> <td>5·<br /> </td> <td>240<br /> </td> <td style="text-align: center;">8/7<br /> </td> <td style="text-align: center;">3b<br /> </td> </tr> <tr> <td>6<br /> </td> <td>288<br /> </td> <td style="text-align: center;">19/16, 20/17<br /> </td> <td style="text-align: center;">3<br /> </td> </tr> <tr> <td>7<br /> </td> <td>336<br /> </td> <td style="text-align: center;">39/32, 17/14, 40/33<br /> </td> <td style="text-align: center;">3#<br /> </td> </tr> <tr> <td>8·<br /> </td> <td>384<br /> </td> <td style="text-align: center;">5/4<br /> </td> <td style="text-align: center;">4b<br /> </td> </tr> <tr> <td>9<br /> </td> <td>432<br /> </td> <td style="text-align: center;">9/7, 32/25, 50/39<br /> </td> <td style="text-align: center;">4<br /> </td> </tr> <tr> <td>10<br /> </td> <td>480<br /> </td> <td style="text-align: center;">33/25, 25/19<br /> </td> <td style="text-align: center;">4#/5b<br /> </td> </tr> <tr> <td>11·<br /> </td> <td>528<br /> </td> <td style="text-align: center;">31/21, 34/25<br /> </td> <td style="text-align: center;">5<br /> </td> </tr> <tr> <td>12<br /> </td> <td>576<br /> </td> <td style="text-align: center;">7/5, 39/28<br /> </td> <td style="text-align: center;">5#<br /> </td> </tr> <tr> <td>13<br /> </td> <td>624<br /> </td> <td style="text-align: center;">10/7, 56/39<br /> </td> <td style="text-align: center;">6b<br /> </td> </tr> <tr> <td>14·<br /> </td> <td>672<br /> </td> <td style="text-align: center;">42/31, 25/17<br /> </td> <td style="text-align: center;">6<br /> </td> </tr> <tr> <td>15<br /> </td> <td>720<br /> </td> <td style="text-align: center;">50/33, 38/25<br /> </td> <td style="text-align: center;">6#<br /> </td> </tr> <tr> <td>16<br /> </td> <td>768<br /> </td> <td style="text-align: center;">14/9, 25/16, 39/25<br /> </td> <td style="text-align: center;">7b<br /> </td> </tr> <tr> <td>17·<br /> </td> <td>816<br /> </td> <td style="text-align: center;">8/5<br /> </td> <td style="text-align: center;">7<br /> </td> </tr> <tr> <td>18<br /> </td> <td>864<br /> </td> <td style="text-align: center;">64/39, 28/17, 33/20<br /> </td> <td style="text-align: center;">7#<br /> </td> </tr> <tr> <td>19<br /> </td> <td>912<br /> </td> <td style="text-align: center;">32/19, 17/10<br /> </td> <td style="text-align: center;">8b<br /> </td> </tr> <tr> <td>20·<br /> </td> <td>960<br /> </td> <td style="text-align: center;">7/4<br /> </td> <td style="text-align: center;">8<br /> </td> </tr> <tr> <td>21<br /> </td> <td>1008<br /> </td> <td style="text-align: center;">16/9, 9/5, 34/19<br /> </td> <td style="text-align: center;">8#<br /> </td> </tr> <tr> <td>22<br /> </td> <td>1056<br /> </td> <td style="text-align: center;">11/6, 35/19<br /> </td> <td style="text-align: center;">9b<br /> </td> </tr> <tr> <td>23<br /> </td> <td>1104<br /> </td> <td style="text-align: center;">32/17, 17/9, 19/10<br /> </td> <td style="text-align: center;">9<br /> </td> </tr> <tr> <td>24<br /> </td> <td>1152<br /> </td> <td style="text-align: center;">33/17, 64/33, 76/39<br /> </td> <td style="text-align: center;">9#/1b<br /> </td> </tr> <tr> <td>25<br /> </td> <td>1200<br /> </td> <td style="text-align: center;">2/1<br /> </td> <td style="text-align: center;">1<br /> </td> </tr> </table> *based on treating 25-EDO as a 2.9.5.7.33.39.17.19 subgroup; other approaches are possible.<br /> <br /> <!-- ws:start:WikiTextHeadingRule:8:<h1> --><h1 id="toc3"><a name="Relationship to Armodue"></a><!-- ws:end:WikiTextHeadingRule:8 -->Relationship to Armodue</h1> <br /> Like 16-EDO and 23-EDO, 25-EDO contains the 9-note "Superdiatonic" scale of 7L2s (LLLsLLLLs) that is generated by a circle of heavily-flattened 3/2s (ranging in size from 5\9-EDO or 666.67 cents, to 4\7-EDO or 685.71 cents). The 25-EDO generator for this scale is the 672-cent interval. This allows 25-EDO to be used with the Armodue notation system in much the same way that 19-EDO is used with the standard diatonic notation; see the above interval chart for the Armodue names. Because the 25-EDO Armodue 6th is flatter than that of 16-EDO (the middle of the Armodue spectrum), sharps are lower in pitch than enharmonic flats.<br /> <br /> <!-- ws:start:WikiTextHeadingRule:10:<h1> --><h1 id="toc4"><a name="Commas"></a><!-- ws:end:WikiTextHeadingRule:10 -->Commas</h1> 25 EDO tempers out the following commas. (Note: This assumes the val < 25 40 58 70 86 93 |.)<br /> <table class="wiki_table"> <tr> <th>Comma<br /> </th> <th>Monzo<br /> </th> <th>Value (Cents)<br /> </th> <th>Name 1<br /> </th> <th>Name 2<br /> </th> <th>Name 3<br /> </th> </tr> <tr> <td style="text-align: center;">256/243<br /> </td> <td style="text-align: left;">| 8 -5 ><br /> </td> <td style="text-align: right;">90.22<br /> </td> <td style="text-align: center;">Limma<br /> </td> <td style="text-align: center;">Pythagorean Minor 2nd<br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td style="text-align: center;">3125/3072<br /> </td> <td style="text-align: left;">| -10 -1 5 ><br /> </td> <td style="text-align: right;">29.61<br /> </td> <td style="text-align: center;">Small Diesis<br /> </td> <td style="text-align: center;">Magic Comma<br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td style="text-align: center;">6719816/6714445<br /> </td> <td style="text-align: left;">| 38 -2 -15 ><br /> </td> <td style="text-align: right;">1.38<br /> </td> <td style="text-align: center;">Hemithirds Comma<br /> </td> <td style="text-align: center;"><br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td style="text-align: center;">16807/16384<br /> </td> <td>| -14 0 0 5 ><br /> </td> <td style="text-align: right;">44.13<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td style="text-align: center;">49/48<br /> </td> <td style="text-align: left;">| -4 -1 0 2 ><br /> </td> <td style="text-align: right;">35.70<br /> </td> <td style="text-align: center;">Slendro Diesis<br /> </td> <td style="text-align: center;"><br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td style="text-align: center;">64/63<br /> </td> <td style="text-align: left;">| 6 -2 0 -1 ><br /> </td> <td style="text-align: right;">27.26<br /> </td> <td style="text-align: center;">Septimal Comma<br /> </td> <td style="text-align: center;">Archytas' Comma<br /> </td> <td style="text-align: center;">Leipziger Komma<br /> </td> </tr> <tr> <td style="text-align: center;">3125/3087<br /> </td> <td style="text-align: left;">| 0 -2 5 -3 ><br /> </td> <td style="text-align: right;">21.18<br /> </td> <td style="text-align: center;">Gariboh<br /> </td> <td style="text-align: center;"><br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td style="text-align: center;">50421/50000<br /> </td> <td style="text-align: left;">| -4 1 -5 5 ><br /> </td> <td style="text-align: right;">14.52<br /> </td> <td style="text-align: center;">Trimyna<br /> </td> <td style="text-align: center;"><br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td style="text-align: center;">1029/1024<br /> </td> <td style="text-align: left;">| -10 1 0 3 ><br /> </td> <td style="text-align: right;">8.43<br /> </td> <td style="text-align: center;">Gamelisma<br /> </td> <td style="text-align: center;"><br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td style="text-align: center;">3136/3125<br /> </td> <td style="text-align: left;">| 6 0 -5 2 ><br /> </td> <td style="text-align: right;">6.08<br /> </td> <td style="text-align: center;">Hemimean<br /> </td> <td style="text-align: center;"><br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td style="text-align: center;">65625/65536<br /> </td> <td style="text-align: left;">| -16 1 5 1 ><br /> </td> <td style="text-align: right;">2.35<br /> </td> <td style="text-align: center;">Horwell<br /> </td> <td style="text-align: center;"><br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td style="text-align: center;">100/99<br /> </td> <td style="text-align: left;">| 2 -2 2 0 -1 ><br /> </td> <td style="text-align: right;">17.40<br /> </td> <td style="text-align: center;">Ptolemisma<br /> </td> <td style="text-align: center;"><br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td style="text-align: center;">176/175<br /> </td> <td style="text-align: left;">| 4 0 -2 -1 1 ><br /> </td> <td style="text-align: right;">9.86<br /> </td> <td style="text-align: center;">Valinorsma<br /> </td> <td style="text-align: center;"><br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td style="text-align: center;">91/90<br /> </td> <td style="text-align: left;">| -1 -2 -1 1 0 1 ><br /> </td> <td style="text-align: right;">19.13<br /> </td> <td style="text-align: center;">Superleap<br /> </td> <td style="text-align: center;"><br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td style="text-align: center;">676/675<br /> </td> <td style="text-align: left;">| 2 -3 -2 0 0 2 ><br /> </td> <td style="text-align: right;">2.56<br /> </td> <td style="text-align: center;">Parizeksma<br /> </td> <td style="text-align: center;"><br /> </td> <td style="text-align: center;"><br /> </td> </tr> </table> <br /> <!-- ws:start:WikiTextHeadingRule:12:<h1> --><h1 id="toc5"><a name="A 25edo keyboard"></a><!-- ws:end:WikiTextHeadingRule:12 -->A 25edo keyboard</h1> <br /> <!-- ws:start:WikiTextLocalImageRule:520:<img src="/file/view/mm25.PNG/179204243/mm25.PNG" alt="" title="" /> --><img src="/file/view/mm25.PNG/179204243/mm25.PNG" alt="mm25.PNG" title="mm25.PNG" /><!-- ws:end:WikiTextLocalImageRule:520 --></body></html>