253edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>Osmiorisbendi
**Imported revision 206698434 - Original comment: **
Wikispaces>genewardsmith
**Imported revision 213834486 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:Osmiorisbendi|Osmiorisbendi]] and made on <tt>2011-03-02 17:32:11 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-03-24 22:24:07 UTC</tt>.<br>
: The original revision id was <tt>206698434</tt>.<br>
: The original revision id was <tt>213834486</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 8: Line 8:
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">=&lt;span style="color: #630080; font-size: 113%;"&gt;253 tone equal temperament&lt;/span&gt;=  
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">=&lt;span style="color: #630080; font-size: 113%;"&gt;253 tone equal temperament&lt;/span&gt;=  


253edo divides the octave in steps of 4,743083 Cents. 253edo contains an aproximation of the Perfect Fifth of **701,976285 Cents (step 148\253)**. It is practically PERFECT.
253edo divides the octave into 253 steps of 4.743083 cents. It approximates the fifth by 148\253, which is **701.976285 cents, a mere 0.004487 cents sharp. The primes from 3 to 17 are all slightly flat. It tempers out 32805/32768 in the 5-limit; 2401/2400 in the 7-limit; 385/384, 1375/1372 and 4000/3993 in the 11-limit; 325/324, 1575/1573 and 2200/2197 in the 13-limit; 375/374 and 595/594 in the 17-limit. It provides a good tuning for higher-limit [[Schismatic family|sesquiquartififths]] temperament.


**253 tone equal modes**
**253 tone equal modes**
Line 20: Line 20:
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;253edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="x253 tone equal temperament"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;&lt;span style="color: #630080; font-size: 113%;"&gt;253 tone equal temperament&lt;/span&gt;&lt;/h1&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;253edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="x253 tone equal temperament"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;&lt;span style="color: #630080; font-size: 113%;"&gt;253 tone equal temperament&lt;/span&gt;&lt;/h1&gt;
  &lt;br /&gt;
  &lt;br /&gt;
253edo divides the octave in steps of 4,743083 Cents. 253edo contains an aproximation of the Perfect Fifth of &lt;strong&gt;701,976285 Cents (step 148\253)&lt;/strong&gt;. It is practically PERFECT.&lt;br /&gt;
253edo divides the octave into 253 steps of 4.743083 cents. It approximates the fifth by 148\253, which is &lt;strong&gt;701.976285 cents, a mere 0.004487 cents sharp. The primes from 3 to 17 are all slightly flat. It tempers out 32805/32768 in the 5-limit; 2401/2400 in the 7-limit; 385/384, 1375/1372 and 4000/3993 in the 11-limit; 325/324, 1575/1573 and 2200/2197 in the 13-limit; 375/374 and 595/594 in the 17-limit. It provides a good tuning for higher-limit &lt;a class="wiki_link" href="/Schismatic%20family"&gt;sesquiquartififths&lt;/a&gt; temperament.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;strong&gt;253 tone equal modes&lt;/strong&gt;&lt;br /&gt;
&lt;/strong&gt;253 tone equal modes**&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
43 43 19 43 43 43 19: MOS of 5L 2s (Superpytagorean Tuning)&lt;br /&gt;
43 43 19 43 43 43 19: MOS of 5L 2s (Superpytagorean Tuning)&lt;br /&gt;

Revision as of 22:24, 24 March 2011

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author genewardsmith and made on 2011-03-24 22:24:07 UTC.
The original revision id was 213834486.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

=<span style="color: #630080; font-size: 113%;">253 tone equal temperament</span>= 

253edo divides the octave into 253 steps of 4.743083 cents. It approximates the fifth by 148\253, which is **701.976285 cents, a mere 0.004487 cents sharp. The primes from 3 to 17 are all slightly flat. It tempers out 32805/32768 in the 5-limit; 2401/2400 in the 7-limit; 385/384, 1375/1372 and 4000/3993 in the 11-limit; 325/324, 1575/1573 and 2200/2197 in the 13-limit; 375/374 and 595/594 in the 17-limit. It provides a good tuning for higher-limit [[Schismatic family|sesquiquartififths]] temperament.

**253 tone equal modes**

43 43 19 43 43 43 19: MOS of 5L 2s (Superpytagorean Tuning)
41 41 24 41 41 41 24: Meantonic Tuning MOS
35 35 35 35 35 35 35 8: MOS of 7L1s (Perfect Porcupine-8 Tuning (Octamonatonic Scale))
33 33 33 11 33 33 33 33 11: MOS of 7L 2s (Armodue-Hornbostel (Bright) Tuning)
31 31 31 18 31 31 31 31 18: Armodue-Mesotonic (Mellow) Tuning MOS

Original HTML content:

<html><head><title>253edo</title></head><body><!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="x253 tone equal temperament"></a><!-- ws:end:WikiTextHeadingRule:0 --><span style="color: #630080; font-size: 113%;">253 tone equal temperament</span></h1>
 <br />
253edo divides the octave into 253 steps of 4.743083 cents. It approximates the fifth by 148\253, which is <strong>701.976285 cents, a mere 0.004487 cents sharp. The primes from 3 to 17 are all slightly flat. It tempers out 32805/32768 in the 5-limit; 2401/2400 in the 7-limit; 385/384, 1375/1372 and 4000/3993 in the 11-limit; 325/324, 1575/1573 and 2200/2197 in the 13-limit; 375/374 and 595/594 in the 17-limit. It provides a good tuning for higher-limit <a class="wiki_link" href="/Schismatic%20family">sesquiquartififths</a> temperament.<br />
<br />
</strong>253 tone equal modes**<br />
<br />
43 43 19 43 43 43 19: MOS of 5L 2s (Superpytagorean Tuning)<br />
41 41 24 41 41 41 24: Meantonic Tuning MOS<br />
35 35 35 35 35 35 35 8: MOS of 7L1s (Perfect Porcupine-8 Tuning (Octamonatonic Scale))<br />
33 33 33 11 33 33 33 33 11: MOS of 7L 2s (Armodue-Hornbostel (Bright) Tuning)<br />
31 31 31 18 31 31 31 31 18: Armodue-Mesotonic (Mellow) Tuning MOS</body></html>