1L 9s: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>keenanpepper
**Imported revision 399959628 - Original comment: **
Wikispaces>keenanpepper
**Imported revision 399959746 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:keenanpepper|keenanpepper]] and made on <tt>2013-01-20 16:18:56 UTC</tt>.<br>
: This revision was by author [[User:keenanpepper|keenanpepper]] and made on <tt>2013-01-20 16:19:44 UTC</tt>.<br>
: The original revision id was <tt>399959628</tt>.<br>
: The original revision id was <tt>399959746</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 10: Line 10:
(octave fraction) ||~ Generator
(octave fraction) ||~ Generator
(cents) ||~ Comments ||
(cents) ||~ Comments ||
|| 0/1 ||  ||  ||  ||  || 0 ||=  ||
|| 0\1 ||  ||  ||  ||  || 0 ||=  ||
||  ||  ||  ||  || 1/14 || 85 5/7 ||=  ||
||  ||  ||  ||  || 1\14 || 85 5/7 ||=  ||
||  ||  ||  || 1/13 ||  || 92 4/13 ||= L/s = 4 ||
||  ||  ||  || 1\13 ||  || 92 4/13 ||= L/s = 4 ||
||  ||  ||  ||  || 2/25 || 96 ||=  ||
||  ||  ||  ||  || 2\25 || 96 ||=  ||
||  ||  || 1/12 ||  ||  || 100 ||= L/s = 3 ||
||  ||  || 1\12 ||  ||  || 100 ||= L/s = 3 ||
||  ||  ||  ||  || 3/35 || 102 6/7 ||=  ||
||  ||  ||  ||  || 3\35 || 102 6/7 ||=  ||
||  ||  ||  || 2/23 ||  || 104.347826 ||=  ||
||  ||  ||  || 2\23 ||  || 104.347826 ||=  ||
||  ||  ||  ||  || 3/34 || 105.882353 ||=  ||
||  ||  ||  ||  || 3\34 || 105.882353 ||=  ||
||  || 1/11 ||  ||  ||  || 109 1/11 ||=  ||
||  || 1\11 ||  ||  ||  || 109 1/11 ||=  ||
||  ||  ||  ||  || 4/43 || 111.627907 ||=  ||
||  ||  ||  ||  || 4\43 || 111.627907 ||=  ||
||  ||  ||  || 3/32 ||  || 112.5 ||=  ||
||  ||  ||  || 3\32 ||  || 112.5 ||=  ||
||  ||  ||  ||  || 5/53 || 113.207547 ||=  ||
||  ||  ||  ||  || 5\53 || 113.207547 ||=  ||
||  ||  || 2/21 ||  ||  || 114 2/7 ||=  ||
||  ||  || 2\21 ||  ||  || 114 2/7 ||=  ||
||  ||  ||  ||  || 5/52 || 115 5/13 ||=  ||
||  ||  ||  ||  || 5\52 || 115 5/13 ||=  ||
||  ||  ||  || 3/31 ||  || 116.129032 ||=  ||
||  ||  ||  || 3\31 ||  || 116.129032 ||=  ||
||  ||  ||  ||  || 4/41 || 117 3/41 ||=  ||
||  ||  ||  ||  || 4\41 || 117 3/41 ||=  ||
|| 1/10 ||  ||  ||  ||  || 120 ||=  ||</pre></div>
|| 1\10 ||  ||  ||  ||  || 120 ||=  ||</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;1L 9s&lt;/title&gt;&lt;/head&gt;&lt;body&gt;This MOS, generated by any interval up to a diatonic semitone of 1/10edo (120 cents), is called the &amp;quot;Happy&amp;quot; decatonic scale. It is the simplest MOS which may be used as a complete version of Miracle temperamet, which is also its harmonic entropy minimum.&lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;1L 9s&lt;/title&gt;&lt;/head&gt;&lt;body&gt;This MOS, generated by any interval up to a diatonic semitone of 1/10edo (120 cents), is called the &amp;quot;Happy&amp;quot; decatonic scale. It is the simplest MOS which may be used as a complete version of Miracle temperamet, which is also its harmonic entropy minimum.&lt;br /&gt;
Line 43: Line 43:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;0/1&lt;br /&gt;
         &lt;td&gt;0\1&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
Line 67: Line 67:
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;1/14&lt;br /&gt;
         &lt;td&gt;1\14&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;85 5/7&lt;br /&gt;
         &lt;td&gt;85 5/7&lt;br /&gt;
Line 81: Line 81:
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;1/13&lt;br /&gt;
         &lt;td&gt;1\13&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
Line 99: Line 99:
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;2/25&lt;br /&gt;
         &lt;td&gt;2\25&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;96&lt;br /&gt;
         &lt;td&gt;96&lt;br /&gt;
Line 111: Line 111:
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;1/12&lt;br /&gt;
         &lt;td&gt;1\12&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
Line 131: Line 131:
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;3/35&lt;br /&gt;
         &lt;td&gt;3\35&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;102 6/7&lt;br /&gt;
         &lt;td&gt;102 6/7&lt;br /&gt;
Line 145: Line 145:
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;2/23&lt;br /&gt;
         &lt;td&gt;2\23&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
Line 163: Line 163:
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;3/34&lt;br /&gt;
         &lt;td&gt;3\34&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;105.882353&lt;br /&gt;
         &lt;td&gt;105.882353&lt;br /&gt;
Line 173: Line 173:
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;1/11&lt;br /&gt;
         &lt;td&gt;1\11&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
Line 195: Line 195:
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;4/43&lt;br /&gt;
         &lt;td&gt;4\43&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;111.627907&lt;br /&gt;
         &lt;td&gt;111.627907&lt;br /&gt;
Line 209: Line 209:
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;3/32&lt;br /&gt;
         &lt;td&gt;3\32&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
Line 227: Line 227:
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;5/53&lt;br /&gt;
         &lt;td&gt;5\53&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;113.207547&lt;br /&gt;
         &lt;td&gt;113.207547&lt;br /&gt;
Line 239: Line 239:
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;2/21&lt;br /&gt;
         &lt;td&gt;2\21&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
Line 259: Line 259:
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;5/52&lt;br /&gt;
         &lt;td&gt;5\52&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;115 5/13&lt;br /&gt;
         &lt;td&gt;115 5/13&lt;br /&gt;
Line 273: Line 273:
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;3/31&lt;br /&gt;
         &lt;td&gt;3\31&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
Line 291: Line 291:
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;4/41&lt;br /&gt;
         &lt;td&gt;4\41&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;117 3/41&lt;br /&gt;
         &lt;td&gt;117 3/41&lt;br /&gt;
Line 299: Line 299:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;1/10&lt;br /&gt;
         &lt;td&gt;1\10&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;

Revision as of 16:19, 20 January 2013

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author keenanpepper and made on 2013-01-20 16:19:44 UTC.
The original revision id was 399959746.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

This MOS, generated by any interval up to a diatonic semitone of 1/10edo (120 cents), is called the "Happy" decatonic scale. It is the simplest MOS which may be used as a complete version of Miracle temperamet, which is also its harmonic entropy minimum.
||||||||||~ Generator
(octave fraction) ||~ Generator
(cents) ||~ Comments ||
|| 0\1 ||   ||   ||   ||   || 0 ||=   ||
||   ||   ||   ||   || 1\14 || 85 5/7 ||=   ||
||   ||   ||   || 1\13 ||   || 92 4/13 ||= L/s = 4 ||
||   ||   ||   ||   || 2\25 || 96 ||=   ||
||   ||   || 1\12 ||   ||   || 100 ||= L/s = 3 ||
||   ||   ||   ||   || 3\35 || 102 6/7 ||=   ||
||   ||   ||   || 2\23 ||   || 104.347826 ||=   ||
||   ||   ||   ||   || 3\34 || 105.882353 ||=   ||
||   || 1\11 ||   ||   ||   || 109 1/11 ||=   ||
||   ||   ||   ||   || 4\43 || 111.627907 ||=   ||
||   ||   ||   || 3\32 ||   || 112.5 ||=   ||
||   ||   ||   ||   || 5\53 || 113.207547 ||=   ||
||   ||   || 2\21 ||   ||   || 114 2/7 ||=   ||
||   ||   ||   ||   || 5\52 || 115 5/13 ||=   ||
||   ||   ||   || 3\31 ||   || 116.129032 ||=   ||
||   ||   ||   ||   || 4\41 || 117 3/41 ||=   ||
|| 1\10 ||   ||   ||   ||   || 120 ||=   ||

Original HTML content:

<html><head><title>1L 9s</title></head><body>This MOS, generated by any interval up to a diatonic semitone of 1/10edo (120 cents), is called the &quot;Happy&quot; decatonic scale. It is the simplest MOS which may be used as a complete version of Miracle temperamet, which is also its harmonic entropy minimum.<br />


<table class="wiki_table">
    <tr>
        <th colspan="5">Generator<br />
(octave fraction)<br />
</th>
        <th>Generator<br />
(cents)<br />
</th>
        <th>Comments<br />
</th>
    </tr>
    <tr>
        <td>0\1<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>0<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>1\14<br />
</td>
        <td>85 5/7<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>1\13<br />
</td>
        <td><br />
</td>
        <td>92 4/13<br />
</td>
        <td style="text-align: center;">L/s = 4<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>2\25<br />
</td>
        <td>96<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td>1\12<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>100<br />
</td>
        <td style="text-align: center;">L/s = 3<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>3\35<br />
</td>
        <td>102 6/7<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>2\23<br />
</td>
        <td><br />
</td>
        <td>104.347826<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>3\34<br />
</td>
        <td>105.882353<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>1\11<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>109 1/11<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>4\43<br />
</td>
        <td>111.627907<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>3\32<br />
</td>
        <td><br />
</td>
        <td>112.5<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>5\53<br />
</td>
        <td>113.207547<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td>2\21<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>114 2/7<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>5\52<br />
</td>
        <td>115 5/13<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>3\31<br />
</td>
        <td><br />
</td>
        <td>116.129032<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>4\41<br />
</td>
        <td>117 3/41<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td>1\10<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>120<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
</table>

</body></html>