Tour of regular temperaments: Difference between revisions
m > Garischismic |
→Rank-2 (including linear) temperaments: It is absolutely unsatisfactory to have hidden the definition of Linear Temperament in the middle of the text. |
||
Line 29: | Line 29: | ||
=Rank-2 (including linear) temperaments= | =Rank-2 (including linear) temperaments= | ||
A p-limit rank-2 temperament maps all intervals of p-limit JI using a set of 2-dimensional coordinates, thus a rank-2 temperament is said to have two generators, though it may have any number of step-sizes. This means that a rank-2 temperament is defined by a period-generator mapping, a set of 2 vals, one val for each generator. The larger generator is called the period, as the temperament will repeat at that interval, and is often a fraction of an octave; if it is exactly an octave, the temperament is said to be a linear temperament. Rank-2 temperaments can be reduced to a related rank-1 temperament by tempering out an additional comma. For example, 5-limit meantone temperament, which is rank-2 (defined by tempering the syntonic comma of 81/80 out of 3-dimensional 5-limit JI), can be reduced to 12-ET by tempering out the Pythagorean comma. | A p-limit rank-2 temperament maps all intervals of p-limit JI using a set of 2-dimensional coordinates, thus a rank-2 temperament is said to have two generators, though it may have any number of step-sizes. This means that a rank-2 temperament is defined by a period-generator mapping, a set of 2 vals, one val for each generator. The larger generator is called the period, as the temperament will repeat at that interval, and is often a fraction of an octave; if it is exactly an octave, the temperament is said to be a '''linear temperament'''. Rank-2 temperaments can be reduced to a related rank-1 temperament by tempering out an additional comma. For example, 5-limit meantone temperament, which is rank-2 (defined by tempering the syntonic comma of 81/80 out of 3-dimensional 5-limit JI), can be reduced to 12-ET by tempering out the Pythagorean comma. | ||
Regular temperaments of ranks two and three are cataloged on the [[Optimal patent val]] page. Rank-2 temperaments are also listed at [[Proposed names for rank 2 temperaments]] by their generator mappings, and at [[Map of rank-2 temperaments]] by their generator size. See also the [[pergen]]s page. There is also [[Graham Breed]]'s [http://x31eq.com/catalog2.html giant list of regular temperaments]. | Regular temperaments of ranks two and three are cataloged on the [[Optimal patent val]] page. Rank-2 temperaments are also listed at [[Proposed names for rank 2 temperaments]] by their generator mappings, and at [[Map of rank-2 temperaments]] by their generator size. See also the [[pergen]]s page. There is also [[Graham Breed]]'s [http://x31eq.com/catalog2.html giant list of regular temperaments]. |