User:AthiTrydhen/15-limit tonality diamond: Difference between revisions
Jump to navigation
Jump to search
Wikispaces>Praimhin **Imported revision 588772064 - Original comment: ** |
Wikispaces>Praimhin **Imported revision 588772130 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User:Praimhin|Praimhin]] and made on <tt>2016-08-04 01: | : This revision was by author [[User:Praimhin|Praimhin]] and made on <tt>2016-08-04 01:23:52 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>588772130</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
Line 19: | Line 19: | ||
The symmetry group of the 15-limit tonality diamond has 24 elements. The following are its generators: | The symmetry group of the 15-limit tonality diamond has 24 elements. The following are its generators: | ||
* 3:2, 5:4, 7:4, 11:8, 13:8 -> 4:3, 5:3, 14:9, 11:9, 13:9 | * Transformation //R//: 3:2, 5:4, 7:4, 11:8, 13:8 -> 4:3, 5:3, 14:9, 11:9, 13:9 | ||
* 3:2, 5:4, 7:4, 11:8, 13:8 -> 3:2, 5:4, 11:8, 7:4, 13:8 | * Transformation //S//: 3:2, 5:4, 7:4, 11:8, 13:8 -> 3:2, 5:4, 11:8, 7:4, 13:8 | ||
* 3:2, 5:4, 7:4, 11:8, 13:8 -> 3:2, 5:4, 7:4, 13:8, 11:8 | * Transformation //S'//: 3:2, 5:4, 7:4, 11:8, 13:8 -> 3:2, 5:4, 7:4, 13:8, 11:8 | ||
* 3:2, 5:4, 7:4, 11:8, 13:8 -> 4:3, 8:5, 8:7, 16:11, 16:13 | * Transformation //T//: 3:2, 5:4, 7:4, 11:8, 13:8 -> 4:3, 8:5, 8:7, 16:11, 16:13 | ||
These generators have the relations //R//² = //S//² = //T//² = //S//'² = I, (//SS//')³ = I, //RS// = //SR//, //RS//' = //S//'//R//, and //T// commutes with the three other generators. Thus the symmetry group is isomorphic to //S//₃ × //C//₂². | |||
===Orbits and Invariant Subsets=== | ===Orbits and Invariant Subsets=== | ||
[ | The [[Hendrix diamond]] is invariant under action by //R,// //S//' and //T//, and the images of the action of //S// and //S//² on the Hendrix diamond are the [[11-Hendrix diamond]] and [[13-Hendrix diamond]] respectively. | ||
Two other interesting invariant subsets are the 5-limit tonality diamond and the tonality diamond constructed from the harmonics 1, 3, 5, 9 and 15.</pre></div> | |||
<h4>Original HTML content:</h4> | <h4>Original HTML content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>15-limit tonality diamond</title></head><body>The <strong>15-limit tonality diamond</strong> has the following notes:<br /> | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>15-limit tonality diamond</title></head><body>The <strong>15-limit tonality diamond</strong> has the following notes:<br /> | ||
Line 181: | Line 185: | ||
<br /> | <br /> | ||
The symmetry group of the 15-limit tonality diamond has 24 elements. The following are its generators:<br /> | The symmetry group of the 15-limit tonality diamond has 24 elements. The following are its generators:<br /> | ||
<ul><li>3:2, 5:4, 7:4, 11:8, 13:8 -&gt; 4:3, 5:3, 14:9, 11:9, 13:9</li><li>3:2, 5:4, 7:4, 11:8, 13:8 -&gt; 3:2, 5:4, 11:8, 7:4, 13:8</li><li>3:2, 5:4, 7:4, 11:8, 13:8 -&gt; 3:2, 5:4, 7:4, 13:8, 11:8</li><li>3:2, 5:4, 7:4, 11:8, 13:8 -&gt; 4:3, 8:5, 8:7, 16:11, 16:13</li></ul><br /> | <ul><li>Transformation <em>R</em>: 3:2, 5:4, 7:4, 11:8, 13:8 -&gt; 4:3, 5:3, 14:9, 11:9, 13:9</li><li>Transformation <em>S</em>: 3:2, 5:4, 7:4, 11:8, 13:8 -&gt; 3:2, 5:4, 11:8, 7:4, 13:8</li><li>Transformation <em>S'</em>: 3:2, 5:4, 7:4, 11:8, 13:8 -&gt; 3:2, 5:4, 7:4, 13:8, 11:8</li><li>Transformation <em>T</em>: 3:2, 5:4, 7:4, 11:8, 13:8 -&gt; 4:3, 8:5, 8:7, 16:11, 16:13</li></ul><br /> | ||
These generators have the relations <em>R</em>² = <em>S</em>² = <em>T</em>² = <em>S</em>'² = I, (<em>SS</em>')³ = I, <em>RS</em> = <em>SR</em>, <em>RS</em>' = <em>S</em>'<em>R</em>, and <em>T</em> commutes with the three other generators. Thus the symmetry group is isomorphic to <em>S</em>₃ × <em>C</em>₂².<br /> | |||
<br /> | |||
<!-- ws:start:WikiTextHeadingRule:2:&lt;h3&gt; --><h3 id="toc1"><a name="x-Symmetry group-Orbits and Invariant Subsets"></a><!-- ws:end:WikiTextHeadingRule:2 -->Orbits and Invariant Subsets</h3> | <!-- ws:start:WikiTextHeadingRule:2:&lt;h3&gt; --><h3 id="toc1"><a name="x-Symmetry group-Orbits and Invariant Subsets"></a><!-- ws:end:WikiTextHeadingRule:2 -->Orbits and Invariant Subsets</h3> | ||
The <a class="wiki_link" href="/Hendrix%20diamond">Hendrix diamond</a> is invariant under action by <em>R,</em> <em>S</em>' and <em>T</em>, and the images of the action of <em>S</em> and <em>S</em>² on the Hendrix diamond are the <a class="wiki_link" href="/11-Hendrix%20diamond">11-Hendrix diamond</a> and <a class="wiki_link" href="/13-Hendrix%20diamond">13-Hendrix diamond</a> respectively.<br /> | |||
<br /> | |||
Two other interesting invariant subsets are the 5-limit tonality diamond and the tonality diamond constructed from the harmonics 1, 3, 5, 9 and 15.</body></html></pre></div> |
Revision as of 01:23, 4 August 2016
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author Praimhin and made on 2016-08-04 01:23:52 UTC.
- The original revision id was 588772130.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
The **15-limit tonality diamond** has the following notes: || 1/1 || 9/8 || 5/4 || 11/8 || 3/2 || 13/8 || 7/4 || 15/8 || || 16/9 || 1/1 || 10/9 || 11/9 || 4/3 || 13/9 || 14/9 || 5/3 || || 8/5 || 9/5 || 1/1 || 11/10 || 6/5 || 13/10 || 7/5 || 3/2 || || 16/11 || 18/11 || 20/11 || 1/1 || 12/11 || 13/11 || 14/11 || 15/11 || || 4/3 || 3/2 || 5/3 || 11/6 || 1/1 || 13/12 || 7/6 || 5/4 || || 16/13 || 18/13 || 20/13 || 22/13 || 24/13 || 1/1 || 14/13 || 15/13 || || 8/7 || 9/7 || 10/7 || 11/7 || 12/7 || 13/7 || 1/1 || 15/14 || || 16/15 || 6/5 || 4/3 || 22/15 || 8/5 || 26/15 || 28/15 || 1/1 || ==Symmetry group== The symmetry group of the 15-limit tonality diamond has 24 elements. The following are its generators: * Transformation //R//: 3:2, 5:4, 7:4, 11:8, 13:8 -> 4:3, 5:3, 14:9, 11:9, 13:9 * Transformation //S//: 3:2, 5:4, 7:4, 11:8, 13:8 -> 3:2, 5:4, 11:8, 7:4, 13:8 * Transformation //S'//: 3:2, 5:4, 7:4, 11:8, 13:8 -> 3:2, 5:4, 7:4, 13:8, 11:8 * Transformation //T//: 3:2, 5:4, 7:4, 11:8, 13:8 -> 4:3, 8:5, 8:7, 16:11, 16:13 These generators have the relations //R//² = //S//² = //T//² = //S//'² = I, (//SS//')³ = I, //RS// = //SR//, //RS//' = //S//'//R//, and //T// commutes with the three other generators. Thus the symmetry group is isomorphic to //S//₃ × //C//₂². ===Orbits and Invariant Subsets=== The [[Hendrix diamond]] is invariant under action by //R,// //S//' and //T//, and the images of the action of //S// and //S//² on the Hendrix diamond are the [[11-Hendrix diamond]] and [[13-Hendrix diamond]] respectively. Two other interesting invariant subsets are the 5-limit tonality diamond and the tonality diamond constructed from the harmonics 1, 3, 5, 9 and 15.
Original HTML content:
<html><head><title>15-limit tonality diamond</title></head><body>The <strong>15-limit tonality diamond</strong> has the following notes:<br /> <br /> <table class="wiki_table"> <tr> <td>1/1<br /> </td> <td>9/8<br /> </td> <td>5/4<br /> </td> <td>11/8<br /> </td> <td>3/2<br /> </td> <td>13/8<br /> </td> <td>7/4<br /> </td> <td>15/8<br /> </td> </tr> <tr> <td>16/9<br /> </td> <td>1/1<br /> </td> <td>10/9<br /> </td> <td>11/9<br /> </td> <td>4/3<br /> </td> <td>13/9<br /> </td> <td>14/9<br /> </td> <td>5/3<br /> </td> </tr> <tr> <td>8/5<br /> </td> <td>9/5<br /> </td> <td>1/1<br /> </td> <td>11/10<br /> </td> <td>6/5<br /> </td> <td>13/10<br /> </td> <td>7/5<br /> </td> <td>3/2<br /> </td> </tr> <tr> <td>16/11<br /> </td> <td>18/11<br /> </td> <td>20/11<br /> </td> <td>1/1<br /> </td> <td>12/11<br /> </td> <td>13/11<br /> </td> <td>14/11<br /> </td> <td>15/11<br /> </td> </tr> <tr> <td>4/3<br /> </td> <td>3/2<br /> </td> <td>5/3<br /> </td> <td>11/6<br /> </td> <td>1/1<br /> </td> <td>13/12<br /> </td> <td>7/6<br /> </td> <td>5/4<br /> </td> </tr> <tr> <td>16/13<br /> </td> <td>18/13<br /> </td> <td>20/13<br /> </td> <td>22/13<br /> </td> <td>24/13<br /> </td> <td>1/1<br /> </td> <td>14/13<br /> </td> <td>15/13<br /> </td> </tr> <tr> <td>8/7<br /> </td> <td>9/7<br /> </td> <td>10/7<br /> </td> <td>11/7<br /> </td> <td>12/7<br /> </td> <td>13/7<br /> </td> <td>1/1<br /> </td> <td>15/14<br /> </td> </tr> <tr> <td>16/15<br /> </td> <td>6/5<br /> </td> <td>4/3<br /> </td> <td>22/15<br /> </td> <td>8/5<br /> </td> <td>26/15<br /> </td> <td>28/15<br /> </td> <td>1/1<br /> </td> </tr> </table> <!-- ws:start:WikiTextHeadingRule:0:<h2> --><h2 id="toc0"><a name="x-Symmetry group"></a><!-- ws:end:WikiTextHeadingRule:0 -->Symmetry group</h2> <br /> The symmetry group of the 15-limit tonality diamond has 24 elements. The following are its generators:<br /> <ul><li>Transformation <em>R</em>: 3:2, 5:4, 7:4, 11:8, 13:8 -> 4:3, 5:3, 14:9, 11:9, 13:9</li><li>Transformation <em>S</em>: 3:2, 5:4, 7:4, 11:8, 13:8 -> 3:2, 5:4, 11:8, 7:4, 13:8</li><li>Transformation <em>S'</em>: 3:2, 5:4, 7:4, 11:8, 13:8 -> 3:2, 5:4, 7:4, 13:8, 11:8</li><li>Transformation <em>T</em>: 3:2, 5:4, 7:4, 11:8, 13:8 -> 4:3, 8:5, 8:7, 16:11, 16:13</li></ul><br /> These generators have the relations <em>R</em>² = <em>S</em>² = <em>T</em>² = <em>S</em>'² = I, (<em>SS</em>')³ = I, <em>RS</em> = <em>SR</em>, <em>RS</em>' = <em>S</em>'<em>R</em>, and <em>T</em> commutes with the three other generators. Thus the symmetry group is isomorphic to <em>S</em>₃ × <em>C</em>₂².<br /> <br /> <!-- ws:start:WikiTextHeadingRule:2:<h3> --><h3 id="toc1"><a name="x-Symmetry group-Orbits and Invariant Subsets"></a><!-- ws:end:WikiTextHeadingRule:2 -->Orbits and Invariant Subsets</h3> The <a class="wiki_link" href="/Hendrix%20diamond">Hendrix diamond</a> is invariant under action by <em>R,</em> <em>S</em>' and <em>T</em>, and the images of the action of <em>S</em> and <em>S</em>² on the Hendrix diamond are the <a class="wiki_link" href="/11-Hendrix%20diamond">11-Hendrix diamond</a> and <a class="wiki_link" href="/13-Hendrix%20diamond">13-Hendrix diamond</a> respectively.<br /> <br /> Two other interesting invariant subsets are the 5-limit tonality diamond and the tonality diamond constructed from the harmonics 1, 3, 5, 9 and 15.</body></html>