User:AthiTrydhen/15-limit tonality diamond: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>Praimhin
**Imported revision 588772064 - Original comment: **
Wikispaces>Praimhin
**Imported revision 588772130 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:Praimhin|Praimhin]] and made on <tt>2016-08-04 01:12:44 UTC</tt>.<br>
: This revision was by author [[User:Praimhin|Praimhin]] and made on <tt>2016-08-04 01:23:52 UTC</tt>.<br>
: The original revision id was <tt>588772064</tt>.<br>
: The original revision id was <tt>588772130</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 19: Line 19:


The symmetry group of the 15-limit tonality diamond has 24 elements. The following are its generators:
The symmetry group of the 15-limit tonality diamond has 24 elements. The following are its generators:
* 3:2, 5:4, 7:4, 11:8, 13:8 -&gt; 4:3, 5:3, 14:9, 11:9, 13:9
* Transformation //R//: 3:2, 5:4, 7:4, 11:8, 13:8 -&gt; 4:3, 5:3, 14:9, 11:9, 13:9
* 3:2, 5:4, 7:4, 11:8, 13:8 -&gt; 3:2, 5:4, 11:8, 7:4, 13:8
* Transformation //S//: 3:2, 5:4, 7:4, 11:8, 13:8 -&gt; 3:2, 5:4, 11:8, 7:4, 13:8
* 3:2, 5:4, 7:4, 11:8, 13:8 -&gt; 3:2, 5:4, 7:4, 13:8, 11:8
* Transformation //S'//: 3:2, 5:4, 7:4, 11:8, 13:8 -&gt; 3:2, 5:4, 7:4, 13:8, 11:8
* 3:2, 5:4, 7:4, 11:8, 13:8 -&gt; 4:3, 8:5, 8:7, 16:11, 16:13
* Transformation //T//: 3:2, 5:4, 7:4, 11:8, 13:8 -&gt; 4:3, 8:5, 8:7, 16:11, 16:13
 
These generators have the relations //R//² = //S//² = //T//² = //S//'² = I, (//SS//')³ = I, //RS// = //SR//, //RS//' = //S//'//R//, and //T// commutes with the three other generators. Thus the symmetry group is isomorphic to //S//₃ × //C//₂².


===Orbits and Invariant Subsets===  
===Orbits and Invariant Subsets===  
[to be included]</pre></div>
The [[Hendrix diamond]] is invariant under action by //R,// //S//' and //T//, and the images of the action of //S// and //S//² on the Hendrix diamond are the [[11-Hendrix diamond]] and [[13-Hendrix diamond]] respectively.
 
Two other interesting invariant subsets are the 5-limit tonality diamond and the tonality diamond constructed from the harmonics 1, 3, 5, 9 and 15.</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;15-limit tonality diamond&lt;/title&gt;&lt;/head&gt;&lt;body&gt;The &lt;strong&gt;15-limit tonality diamond&lt;/strong&gt; has the following notes:&lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;15-limit tonality diamond&lt;/title&gt;&lt;/head&gt;&lt;body&gt;The &lt;strong&gt;15-limit tonality diamond&lt;/strong&gt; has the following notes:&lt;br /&gt;
Line 181: Line 185:
  &lt;br /&gt;
  &lt;br /&gt;
The symmetry group of the 15-limit tonality diamond has 24 elements. The following are its generators:&lt;br /&gt;
The symmetry group of the 15-limit tonality diamond has 24 elements. The following are its generators:&lt;br /&gt;
&lt;ul&gt;&lt;li&gt;3:2, 5:4, 7:4, 11:8, 13:8 -&amp;gt; 4:3, 5:3, 14:9, 11:9, 13:9&lt;/li&gt;&lt;li&gt;3:2, 5:4, 7:4, 11:8, 13:8 -&amp;gt; 3:2, 5:4, 11:8, 7:4, 13:8&lt;/li&gt;&lt;li&gt;3:2, 5:4, 7:4, 11:8, 13:8 -&amp;gt; 3:2, 5:4, 7:4, 13:8, 11:8&lt;/li&gt;&lt;li&gt;3:2, 5:4, 7:4, 11:8, 13:8 -&amp;gt; 4:3, 8:5, 8:7, 16:11, 16:13&lt;/li&gt;&lt;/ul&gt;&lt;br /&gt;
&lt;ul&gt;&lt;li&gt;Transformation &lt;em&gt;R&lt;/em&gt;: 3:2, 5:4, 7:4, 11:8, 13:8 -&amp;gt; 4:3, 5:3, 14:9, 11:9, 13:9&lt;/li&gt;&lt;li&gt;Transformation &lt;em&gt;S&lt;/em&gt;: 3:2, 5:4, 7:4, 11:8, 13:8 -&amp;gt; 3:2, 5:4, 11:8, 7:4, 13:8&lt;/li&gt;&lt;li&gt;Transformation &lt;em&gt;S'&lt;/em&gt;: 3:2, 5:4, 7:4, 11:8, 13:8 -&amp;gt; 3:2, 5:4, 7:4, 13:8, 11:8&lt;/li&gt;&lt;li&gt;Transformation &lt;em&gt;T&lt;/em&gt;: 3:2, 5:4, 7:4, 11:8, 13:8 -&amp;gt; 4:3, 8:5, 8:7, 16:11, 16:13&lt;/li&gt;&lt;/ul&gt;&lt;br /&gt;
These generators have the relations &lt;em&gt;R&lt;/em&gt;² = &lt;em&gt;S&lt;/em&gt;² = &lt;em&gt;T&lt;/em&gt;² = &lt;em&gt;S&lt;/em&gt;'² = I, (&lt;em&gt;SS&lt;/em&gt;')³ = I, &lt;em&gt;RS&lt;/em&gt; = &lt;em&gt;SR&lt;/em&gt;, &lt;em&gt;RS&lt;/em&gt;' = &lt;em&gt;S&lt;/em&gt;'&lt;em&gt;R&lt;/em&gt;, and &lt;em&gt;T&lt;/em&gt; commutes with the three other generators. Thus the symmetry group is isomorphic to &lt;em&gt;S&lt;/em&gt;₃ × &lt;em&gt;C&lt;/em&gt;₂².&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc1"&gt;&lt;a name="x-Symmetry group-Orbits and Invariant Subsets"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Orbits and Invariant Subsets&lt;/h3&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc1"&gt;&lt;a name="x-Symmetry group-Orbits and Invariant Subsets"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Orbits and Invariant Subsets&lt;/h3&gt;
  [to be included]&lt;/body&gt;&lt;/html&gt;</pre></div>
  The &lt;a class="wiki_link" href="/Hendrix%20diamond"&gt;Hendrix diamond&lt;/a&gt; is invariant under action by &lt;em&gt;R,&lt;/em&gt; &lt;em&gt;S&lt;/em&gt;' and &lt;em&gt;T&lt;/em&gt;, and the images of the action of &lt;em&gt;S&lt;/em&gt; and &lt;em&gt;S&lt;/em&gt;² on the Hendrix diamond are the &lt;a class="wiki_link" href="/11-Hendrix%20diamond"&gt;11-Hendrix diamond&lt;/a&gt; and &lt;a class="wiki_link" href="/13-Hendrix%20diamond"&gt;13-Hendrix diamond&lt;/a&gt; respectively.&lt;br /&gt;
&lt;br /&gt;
Two other interesting invariant subsets are the 5-limit tonality diamond and the tonality diamond constructed from the harmonics 1, 3, 5, 9 and 15.&lt;/body&gt;&lt;/html&gt;</pre></div>

Revision as of 01:23, 4 August 2016

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author Praimhin and made on 2016-08-04 01:23:52 UTC.
The original revision id was 588772130.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

The **15-limit tonality diamond** has the following notes:

|| 1/1 || 9/8 || 5/4 || 11/8 || 3/2 || 13/8 || 7/4 || 15/8 ||
|| 16/9 || 1/1 || 10/9 || 11/9 || 4/3 || 13/9 || 14/9 || 5/3 ||
|| 8/5 || 9/5 || 1/1 || 11/10 || 6/5 || 13/10 || 7/5 || 3/2 ||
|| 16/11 || 18/11 || 20/11 || 1/1 || 12/11 || 13/11 || 14/11 || 15/11 ||
|| 4/3 || 3/2 || 5/3 || 11/6 || 1/1 || 13/12 || 7/6 || 5/4 ||
|| 16/13 || 18/13 || 20/13 || 22/13 || 24/13 || 1/1 || 14/13 || 15/13 ||
|| 8/7 || 9/7 || 10/7 || 11/7 || 12/7 || 13/7 || 1/1 || 15/14 ||
|| 16/15 || 6/5 || 4/3 || 22/15 || 8/5 || 26/15 || 28/15 || 1/1 ||
==Symmetry group== 

The symmetry group of the 15-limit tonality diamond has 24 elements. The following are its generators:
* Transformation //R//: 3:2, 5:4, 7:4, 11:8, 13:8 -> 4:3, 5:3, 14:9, 11:9, 13:9
* Transformation //S//: 3:2, 5:4, 7:4, 11:8, 13:8 -> 3:2, 5:4, 11:8, 7:4, 13:8
* Transformation //S'//: 3:2, 5:4, 7:4, 11:8, 13:8 -> 3:2, 5:4, 7:4, 13:8, 11:8
* Transformation //T//: 3:2, 5:4, 7:4, 11:8, 13:8 -> 4:3, 8:5, 8:7, 16:11, 16:13

These generators have the relations //R//² = //S//² = //T//² = //S//'² = I, (//SS//')³ = I, //RS// = //SR//, //RS//' = //S//'//R//, and //T// commutes with the three other generators. Thus the symmetry group is isomorphic to //S//₃ × //C//₂².

===Orbits and Invariant Subsets=== 
The [[Hendrix diamond]] is invariant under action by //R,// //S//' and //T//, and the images of the action of //S// and //S//² on the Hendrix diamond are the [[11-Hendrix diamond]] and [[13-Hendrix diamond]] respectively.

Two other interesting invariant subsets are the 5-limit tonality diamond and the tonality diamond constructed from the harmonics 1, 3, 5, 9 and 15.

Original HTML content:

<html><head><title>15-limit tonality diamond</title></head><body>The <strong>15-limit tonality diamond</strong> has the following notes:<br />
<br />


<table class="wiki_table">
    <tr>
        <td>1/1<br />
</td>
        <td>9/8<br />
</td>
        <td>5/4<br />
</td>
        <td>11/8<br />
</td>
        <td>3/2<br />
</td>
        <td>13/8<br />
</td>
        <td>7/4<br />
</td>
        <td>15/8<br />
</td>
    </tr>
    <tr>
        <td>16/9<br />
</td>
        <td>1/1<br />
</td>
        <td>10/9<br />
</td>
        <td>11/9<br />
</td>
        <td>4/3<br />
</td>
        <td>13/9<br />
</td>
        <td>14/9<br />
</td>
        <td>5/3<br />
</td>
    </tr>
    <tr>
        <td>8/5<br />
</td>
        <td>9/5<br />
</td>
        <td>1/1<br />
</td>
        <td>11/10<br />
</td>
        <td>6/5<br />
</td>
        <td>13/10<br />
</td>
        <td>7/5<br />
</td>
        <td>3/2<br />
</td>
    </tr>
    <tr>
        <td>16/11<br />
</td>
        <td>18/11<br />
</td>
        <td>20/11<br />
</td>
        <td>1/1<br />
</td>
        <td>12/11<br />
</td>
        <td>13/11<br />
</td>
        <td>14/11<br />
</td>
        <td>15/11<br />
</td>
    </tr>
    <tr>
        <td>4/3<br />
</td>
        <td>3/2<br />
</td>
        <td>5/3<br />
</td>
        <td>11/6<br />
</td>
        <td>1/1<br />
</td>
        <td>13/12<br />
</td>
        <td>7/6<br />
</td>
        <td>5/4<br />
</td>
    </tr>
    <tr>
        <td>16/13<br />
</td>
        <td>18/13<br />
</td>
        <td>20/13<br />
</td>
        <td>22/13<br />
</td>
        <td>24/13<br />
</td>
        <td>1/1<br />
</td>
        <td>14/13<br />
</td>
        <td>15/13<br />
</td>
    </tr>
    <tr>
        <td>8/7<br />
</td>
        <td>9/7<br />
</td>
        <td>10/7<br />
</td>
        <td>11/7<br />
</td>
        <td>12/7<br />
</td>
        <td>13/7<br />
</td>
        <td>1/1<br />
</td>
        <td>15/14<br />
</td>
    </tr>
    <tr>
        <td>16/15<br />
</td>
        <td>6/5<br />
</td>
        <td>4/3<br />
</td>
        <td>22/15<br />
</td>
        <td>8/5<br />
</td>
        <td>26/15<br />
</td>
        <td>28/15<br />
</td>
        <td>1/1<br />
</td>
    </tr>
</table>

<!-- ws:start:WikiTextHeadingRule:0:&lt;h2&gt; --><h2 id="toc0"><a name="x-Symmetry group"></a><!-- ws:end:WikiTextHeadingRule:0 -->Symmetry group</h2>
 <br />
The symmetry group of the 15-limit tonality diamond has 24 elements. The following are its generators:<br />
<ul><li>Transformation <em>R</em>: 3:2, 5:4, 7:4, 11:8, 13:8 -&gt; 4:3, 5:3, 14:9, 11:9, 13:9</li><li>Transformation <em>S</em>: 3:2, 5:4, 7:4, 11:8, 13:8 -&gt; 3:2, 5:4, 11:8, 7:4, 13:8</li><li>Transformation <em>S'</em>: 3:2, 5:4, 7:4, 11:8, 13:8 -&gt; 3:2, 5:4, 7:4, 13:8, 11:8</li><li>Transformation <em>T</em>: 3:2, 5:4, 7:4, 11:8, 13:8 -&gt; 4:3, 8:5, 8:7, 16:11, 16:13</li></ul><br />
These generators have the relations <em>R</em>² = <em>S</em>² = <em>T</em>² = <em>S</em>'² = I, (<em>SS</em>')³ = I, <em>RS</em> = <em>SR</em>, <em>RS</em>' = <em>S</em>'<em>R</em>, and <em>T</em> commutes with the three other generators. Thus the symmetry group is isomorphic to <em>S</em>₃ × <em>C</em>₂².<br />
<br />
<!-- ws:start:WikiTextHeadingRule:2:&lt;h3&gt; --><h3 id="toc1"><a name="x-Symmetry group-Orbits and Invariant Subsets"></a><!-- ws:end:WikiTextHeadingRule:2 -->Orbits and Invariant Subsets</h3>
 The <a class="wiki_link" href="/Hendrix%20diamond">Hendrix diamond</a> is invariant under action by <em>R,</em> <em>S</em>' and <em>T</em>, and the images of the action of <em>S</em> and <em>S</em>² on the Hendrix diamond are the <a class="wiki_link" href="/11-Hendrix%20diamond">11-Hendrix diamond</a> and <a class="wiki_link" href="/13-Hendrix%20diamond">13-Hendrix diamond</a> respectively.<br />
<br />
Two other interesting invariant subsets are the 5-limit tonality diamond and the tonality diamond constructed from the harmonics 1, 3, 5, 9 and 15.</body></html>