Tour of regular temperaments: Difference between revisions

Got canou family
Xenwolf (talk | contribs)
Line 52: Line 52:


===[[Schismatic family|Schismatic or Layo family]] (P8, P5)===
===[[Schismatic family|Schismatic or Layo family]] (P8, P5)===
The schismatic family tempers out the schisma of [-15 8 1> = [[32805/32768]], which is the amount by which the Pythagorean comma exceeds the syntonic comma. The 5-limit version of the temperament is a [[Microtempering|microtemperament]] which flattens the fifth by a fraction of a schisma, but other members of the family are less accurate. As a 5-limit system, it is far more accurate than meantone but still with manageable complexity; whereas meantone equates four 3/2's with 5/1, schismatic equates eight 4/3's with 10/1, so that the Pythagorean diminished fourth of 8192/6561 is equated with 5/4. Tunings include [[12edo]], [[29edo]], [[41edo]], [[53edo]], and [[118edo]].
The schismatic family tempers out the schisma of [-15 8 1> = [[32805/32768]], which is the amount by which the Pythagorean comma exceeds the syntonic comma. The 5-limit version of the temperament is a [[microtemperament]] which flattens the fifth by a fraction of a schisma, but other members of the family are less accurate. As a 5-limit system, it is far more accurate than meantone but still with manageable complexity; whereas meantone equates four 3/2's with 5/1, schismatic equates eight 4/3's with 10/1, so that the Pythagorean diminished fourth of 8192/6561 is equated with 5/4. Tunings include [[12edo]], [[29edo]], [[41edo]], [[53edo]], and [[118edo]].


=== [[Suprapyth|Suprapyth or Sayo family]] (P8, P5) ===
=== [[Suprapyth|Suprapyth or Sayo family]] (P8, P5) ===