26edo: Difference between revisions
m use of template:val + link val |
m General cleanup |
||
Line 3: | Line 3: | ||
== Theory == | == Theory == | ||
<b>26edo</b> divides the [[octave]] into 26 equal parts of 46.154 [[ | <b>26edo</b> divides the [[octave]] into 26 equal parts of 46.154 [[Cent|cents]] each. It tempers out 81/80 in the [[5-limit]], making it a meantone tuning with a very flat fifth. In the [[7-limit]], it tempers out 50/49, 525/512 and 875/864, and supports [[injera]], [[flattone]], [[Jubilismic clan#Lemba|lemba]] and [[Jubilismic clan#Doublewide|doublewide]] temperaments. It really comes into its own as a higher-limit temperament, being the smallest equal division which represents the [[13 odd limit]] [[consistent|consistently]]. 26edo has a very good approximation of the harmonic seventh ([[7/4]]). | ||
26edo's "minor sixth" (1.6158) is very close to φ ≈ 1.6180 (i. e., the golden ratio). | 26edo's "minor sixth" (1.6158) is very close to φ ≈ 1.6180 (i. e., the golden ratio). | ||
Line 21: | Line 21: | ||
== Intervals == | == Intervals == | ||
{| class="wikitable | {| class="wikitable center-all right-2 left-3" | ||
|- | |- | ||
! Degrees | ! Degrees | ||
![[ | ! [[Cents|cents]] | ||
! Approximate Ratios* | ! Approximate Ratios* | ||
! Solfege | ! Solfege | ||
! Interval <br | ! Interval<br>Name | ||
! Example <br | ! Example<br>in D | ||
|- | |- | ||
| 0 | | 0 | ||
Line 59: | Line 59: | ||
|- | |- | ||
| 4 | | 4 | ||
| 184. | | 184.62 | ||
| [[9/8]], [[10/9]], [[11/10]] | | [[9/8]], [[10/9]], [[11/10]] | ||
| re | | re | ||
Line 94: | Line 94: | ||
|- | |- | ||
| 9 | | 9 | ||
| 415. | | 415.38 | ||
| [[9/7]], [[14/11]], [[33/26]] | | [[9/7]], [[14/11]], [[33/26]] | ||
| maa | | maa | ||
Line 122: | Line 122: | ||
|- | |- | ||
| 13 | | 13 | ||
|600 | |600.00 | ||
| [[7/5]], [[10/7]] | | [[7/5]], [[10/7]] | ||
| fi/se | | fi/se | ||
Line 150: | Line 150: | ||
|- | |- | ||
| 17 | | 17 | ||
| 784. | | 784.62 | ||
| [[11/7]], [[14/9]] | | [[11/7]], [[14/9]] | ||
| leh | | leh | ||
Line 185: | Line 185: | ||
|- | |- | ||
| 22 | | 22 | ||
| 1015. | | 1015.38 | ||
| [[9/5]], [[16/9]], [[20/11]] | | [[9/5]], [[16/9]], [[20/11]] | ||
| te | | te | ||
Line 213: | Line 213: | ||
|- | |- | ||
| 26 | | 26 | ||
| 1200 | | 1200.00 | ||
| 2/1 | | 2/1 | ||
| do | | do | ||
Line 305: | Line 305: | ||
== Selected just intervals by error == | == Selected just intervals by error == | ||
The following table shows how [[ | ==== 15-odd-limit interval mappings ==== | ||
The following table shows how [[15-odd-limit intervals]] are represented in 26edo. Prime harmonics are in '''bold'''; inconsistent intervals are in ''italic''. | |||
{| class="wikitable" style="text-align:center;" | {| class="wikitable" style="text-align:center;" | ||
|+Direct mapping (even if inconsistent) | |||
|- | |- | ||
! Interval, complement | ! Interval, complement | ||
! Error (abs | ! Error (abs, [[Cent|¢]]) | ||
|- | |- | ||
| [[13/12]], [[24/13]] | | [[13/12]], [[24/13]] | ||
| 0.111 | | 0.111 | ||
|- | |- | ||
| [[8/7]], [[7/4]] | | '''[[8/7]], [[7/4]]''' | ||
| 0.405 | | '''0.405''' | ||
|- | |- | ||
| [[14/11]], [[11/7]] | | [[14/11]], [[11/7]] | ||
Line 326: | Line 326: | ||
| 2.212 | | 2.212 | ||
|- | |- | ||
| [[11/8]], [[16/11]] | | '''[[11/8]], [[16/11]]''' | ||
| 2.528 | | '''2.528''' | ||
|- | |- | ||
| [[13/10]], [[20/13]] | | [[13/10]], [[20/13]] | ||
Line 338: | Line 338: | ||
| 9.536 | | 9.536 | ||
|- | |- | ||
| [[4/3]], [[3/2]] | | '''[[4/3]], [[3/2]]''' | ||
| 9.647 | | '''9.647''' | ||
|- | |- | ||
| [[16/13]], [[13/8]] | | '''[[16/13]], [[13/8]]''' | ||
| 9.758 | | '''9.758''' | ||
|- | |- | ||
| [[7/6]], [[12/7]] | | [[7/6]], [[12/7]] | ||
Line 356: | Line 356: | ||
| 12.287 | | 12.287 | ||
|- | |- | ||
| [[15/11]], [[22/15]] | | ''[[15/11]], [[22/15]]'' | ||
| 16.895 | | ''16.895'' | ||
|- | |- | ||
| [[15/13]], [[26/15]] | | [[15/13]], [[26/15]] | ||
| 16.972 | | 16.972 | ||
|- | |- | ||
| [[5/4]], [[8/5]] | | '''[[5/4]], [[8/5]]''' | ||
| 17.083 | | '''17.083''' | ||
|- | |- | ||
| [[7/5]], [[10/7]] | | [[7/5]], [[10/7]] | ||
| 17.488 | | 17.488 | ||
|- | |- | ||
| [[15/14]], [[28/15]] | | ''[[15/14]], [[28/15]]'' | ||
| 19.019 | | ''19.019'' | ||
|- | |- | ||
| [[9/8]], [[16/9]] | | [[9/8]], [[16/9]] | ||
| 19.295 | | 19.295 | ||
|- | |- | ||
| [[16/15]], [[15/8]] | | ''[[16/15]], [[15/8]]'' | ||
| 19.424 | | ''19.424'' | ||
|- | |- | ||
| [[11/10]], [[20/11]] | | [[11/10]], [[20/11]] | ||
Line 386: | Line 386: | ||
| 21.823 | | 21.823 | ||
|} | |} | ||
{| class="wikitable" style="text-align:center;" | {| class="wikitable" style="text-align:center;" | ||
|+Patent val mapping | |||
|- | |- | ||
! Interval, complement | ! Interval, complement | ||
! Error (abs | ! Error (abs, [[Cent|¢]]) | ||
|- | |- | ||
| [[13/12]], [[24/13]] | | [[13/12]], [[24/13]] | ||
| 0.111 | | 0.111 | ||
|- | |- | ||
| [[8/7]], [[7/4]] | | '''[[8/7]], [[7/4]]''' | ||
| 0.405 | | '''0.405''' | ||
|- | |- | ||
| [[14/11]], [[11/7]] | | [[14/11]], [[11/7]] | ||
Line 406: | Line 405: | ||
| 2.212 | | 2.212 | ||
|- | |- | ||
| [[11/8]], [[16/11]] | | '''[[11/8]], [[16/11]]''' | ||
| 2.528 | | '''2.528''' | ||
|- | |- | ||
| [[13/10]], [[20/13]] | | [[13/10]], [[20/13]] | ||
Line 418: | Line 417: | ||
| 9.536 | | 9.536 | ||
|- | |- | ||
| [[4/3]], [[3/2]] | | '''[[4/3]], [[3/2]]''' | ||
| 9.647 | | '''9.647''' | ||
|- | |- | ||
| [[16/13]], [[13/8]] | | '''[[16/13]], [[13/8]]''' | ||
| 9.758 | | '''9.758''' | ||
|- | |- | ||
| [[7/6]], [[12/7]] | | [[7/6]], [[12/7]] | ||
Line 439: | Line 438: | ||
| 16.972 | | 16.972 | ||
|- | |- | ||
| [[5/4]], [[8/5]] | | '''[[5/4]], [[8/5]]''' | ||
| 17.083 | | '''17.083''' | ||
|- | |- | ||
| [[7/5]], [[10/7]] | | [[7/5]], [[10/7]] | ||
Line 457: | Line 456: | ||
| 21.823 | | 21.823 | ||
|- | |- | ||
| [[16/15]], [[15/8]] | | ''[[16/15]], [[15/8]]'' | ||
| 26.730 | | ''26.730'' | ||
|- | |- | ||
| [[15/14]], [[28/15]] | | ''[[15/14]], [[28/15]]'' | ||
| 27.135 | | ''27.135'' | ||
|- | |- | ||
| [[15/11]], [[22/15]] | | ''[[15/11]], [[22/15]]'' | ||
| 29.258 | | ''29.258'' | ||
|} | |} | ||
Line 715: | Line 714: | ||
The primary triad for orgone temperament is 8:11:14 and its subharmonic inversion, which these scales have in abundance. 2g approximates [[16/11|16:11]] and 3g approximates [[7/4|7:4]] (and I would call that the definition of Orgone Temperament). That also implies that g approximates the difference between 7:4 and 16:11, which is 77:64, about 320.1 cents. | The primary triad for orgone temperament is 8:11:14 and its subharmonic inversion, which these scales have in abundance. 2g approximates [[16/11|16:11]] and 3g approximates [[7/4|7:4]] (and I would call that the definition of Orgone Temperament). That also implies that g approximates the difference between 7:4 and 16:11, which is 77:64, about 320.1 cents. | ||
[[ | [[37edo]] is another orgone tuning, and [[89edo]] is better even than 26. If we take 11 and 26 to be the edges of the Orgone Spectrum, we may fill in the rest of the spectrum thus: | ||
{| class="wikitable" | {| class="wikitable" | ||
Line 856: | Line 855: | ||
[[Category:Theory]] | [[Category:Theory]] | ||
[[Category:Twentuning]] | [[Category:Twentuning]] | ||