23edf: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>toddiharrop
**Imported revision 553808036 - Original comment: **
Wikispaces>FREEZE
No edit summary
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
Twenty-three equal divisions of the perfect fifth (23ed3/2)
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:toddiharrop|toddiharrop]] and made on <tt>2015-06-13 05:23:10 UTC</tt>.<br>
: The original revision id was <tt>553808036</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">Twenty-three equal divisions of the perfect fifth (23ed3/2)


Rank 1 scale with step size of 30.52 cents.
Rank 1 scale with step size of 30.52 cents.
Close to 39ed2 and/or 62ed3, however, the respective
Close to 39ed2 and/or 62ed3, however, the respective
octave and twelfth would need to be nearly 10 cents flat.
octave and twelfth would need to be nearly 10 cents flat.
A proponent of this scale is Petr Pařízek.
A proponent of this scale is Petr Pařízek.


Some intervals in table below, selected on the basis of
Some intervals in table below, selected on the basis of
single-use of primes (for most cases):
single-use of primes (for most cases):
||= **Step** ||= **Size**
**(cents)** ||= **Approx.**
**(JI) ratio** ||= **Error from**
**ratio (cents)** ||
||= 19 ||= 579.9 ||= 7/5 ||= –2.6¢ ||
||= 23 ||= 702 ||= 3/2 ||=  ||
||= 24 ||= 732.5 ||= 29/19 ||= +0.4¢ ||
||= 29 ||= 885.1 ||= 5/3 ||= +0.7¢ ||
||= 31 ||= 946.1 ||= 19/11 ||= –0.1¢ ||
||= 35 ||= 1068 ||= 13/7 ||= –3.5¢ ||
||= 46 ||= 1404 ||= 9/4 ||=  ||
||= 48 ||= 1465 ||= 7/3 ||= –1.9¢ ||
||= 52 ||= 1587 ||= 5/2 ||= +0.7¢ ||
||= 55 ||= 1679 ||= 29/11 ||= +0.3¢ ||
||= 58 ||= 1770 ||= 25/9 ||= +1.4¢ ||
||= 71 ||= 2167 ||= 7/2 ||= –1.9¢ ||
||=  ||=  ||=  ||=  ||
–Todd Harrop (June 2015)</pre></div>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;23edf&lt;/title&gt;&lt;/head&gt;&lt;body&gt;Twenty-three equal divisions of the perfect fifth (23ed3/2)&lt;br /&gt;
&lt;br /&gt;
Rank 1 scale with step size of 30.52 cents.&lt;br /&gt;
Close to 39ed2 and/or 62ed3, however, the respective&lt;br /&gt;
octave and twelfth would need to be nearly 10 cents flat.&lt;br /&gt;
A proponent of this scale is Petr Pařízek.&lt;br /&gt;
&lt;br /&gt;
Some intervals in table below, selected on the basis of&lt;br /&gt;
single-use of primes (for most cases):&lt;br /&gt;


{| class="wikitable"
|-
| style="text-align:center;" | '''Step'''
| style="text-align:center;" | '''Size'''
'''(cents)'''
| style="text-align:center;" | '''Approx.'''


&lt;table class="wiki_table"&gt;
'''(JI) ratio'''
    &lt;tr&gt;
| style="text-align:center;" | '''Error from'''
        &lt;td style="text-align: center;"&gt;&lt;strong&gt;Step&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;strong&gt;Size&lt;/strong&gt; &lt;br /&gt;
&lt;strong&gt;(cents)&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;strong&gt;Approx.&lt;/strong&gt; &lt;br /&gt;
&lt;strong&gt;(JI) ratio&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;strong&gt;Error from&lt;/strong&gt; &lt;br /&gt;
&lt;strong&gt;ratio (cents)&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;19&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;579.9&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;7/5&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;–2.6¢&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;23&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;702&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;3/2&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;24&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;732.5&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;29/19&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;+0.4¢&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;29&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;885.1&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;5/3&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;+0.7¢&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;31&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;946.1&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;19/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;–0.1¢&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;35&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;1068&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;13/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;–3.5¢&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;46&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;1404&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;9/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;48&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;1465&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;7/3&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;–1.9¢&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;52&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;1587&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;5/2&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;+0.7¢&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;55&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;1679&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;29/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;+0.3¢&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;58&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;1770&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;25/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;+1.4¢&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;71&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;2167&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;7/2&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;–1.9¢&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;


–Todd Harrop (June 2015)&lt;/body&gt;&lt;/html&gt;</pre></div>
'''ratio (cents)'''
|-
| style="text-align:center;" | 19
| style="text-align:center;" | 579.9
| style="text-align:center;" | 7/5
| style="text-align:center;" | –2.6¢
|-
| style="text-align:center;" | 23
| style="text-align:center;" | 702
| style="text-align:center;" | 3/2
| style="text-align:center;" |
|-
| style="text-align:center;" | 24
| style="text-align:center;" | 732.5
| style="text-align:center;" | 29/19
| style="text-align:center;" | +0.4¢
|-
| style="text-align:center;" | 29
| style="text-align:center;" | 885.1
| style="text-align:center;" | 5/3
| style="text-align:center;" | +0.7¢
|-
| style="text-align:center;" | 31
| style="text-align:center;" | 946.1
| style="text-align:center;" | 19/11
| style="text-align:center;" | –0.1¢
|-
| style="text-align:center;" | 35
| style="text-align:center;" | 1068
| style="text-align:center;" | 13/7
| style="text-align:center;" | –3.5¢
|-
| style="text-align:center;" | 46
| style="text-align:center;" | 1404
| style="text-align:center;" | 9/4
| style="text-align:center;" |
|-
| style="text-align:center;" | 48
| style="text-align:center;" | 1465
| style="text-align:center;" | 7/3
| style="text-align:center;" | –1.9¢
|-
| style="text-align:center;" | 52
| style="text-align:center;" | 1587
| style="text-align:center;" | 5/2
| style="text-align:center;" | +0.7¢
|-
| style="text-align:center;" | 55
| style="text-align:center;" | 1679
| style="text-align:center;" | 29/11
| style="text-align:center;" | +0.3¢
|-
| style="text-align:center;" | 58
| style="text-align:center;" | 1770
| style="text-align:center;" | 25/9
| style="text-align:center;" | +1.4¢
|-
| style="text-align:center;" | 71
| style="text-align:center;" | 2167
| style="text-align:center;" | 7/2
| style="text-align:center;" | –1.9¢
|-
| style="text-align:center;" |
| style="text-align:center;" |
| style="text-align:center;" |
| style="text-align:center;" |
|}
–Todd Harrop (June 2015)
[[Category:31edo]]
[[Category:edf]]
[[Category:nonoctave]]
[[Category:what_is]]
[[Category:wiki]]

Revision as of 00:00, 17 July 2018

Twenty-three equal divisions of the perfect fifth (23ed3/2)

Rank 1 scale with step size of 30.52 cents.

Close to 39ed2 and/or 62ed3, however, the respective

octave and twelfth would need to be nearly 10 cents flat.

A proponent of this scale is Petr Pařízek.

Some intervals in table below, selected on the basis of

single-use of primes (for most cases):

Step Size

(cents)

Approx.

(JI) ratio

Error from

ratio (cents)

19 579.9 7/5 –2.6¢
23 702 3/2
24 732.5 29/19 +0.4¢
29 885.1 5/3 +0.7¢
31 946.1 19/11 –0.1¢
35 1068 13/7 –3.5¢
46 1404 9/4
48 1465 7/3 –1.9¢
52 1587 5/2 +0.7¢
55 1679 29/11 +0.3¢
58 1770 25/9 +1.4¢
71 2167 7/2 –1.9¢

–Todd Harrop (June 2015)