50edo: Difference between revisions
→Intervals: Note on comparative weakness of the major 2nd in this tuning. |
m General cleanup |
||
Line 1: | Line 1: | ||
__FORCETOC__ | __FORCETOC__ | ||
'''50edo''' divides the [[Octave|octave]] into 50 equal parts of precisely 24 [[cent| | '''50edo''' divides the [[Octave|octave]] into 50 equal parts of precisely 24 [[cent|cents]] each. In the [[5-limit|5-limit]], it tempers out 81/80, making it a [[Meantone|meantone]] system, and in that capacity has historically has drawn some notice. In [http://lit.gfax.ch/Harmonics%202nd%20Edition%20%28Robert%20Smith%29.pdf "Harmonics or the Philosophy of Musical Sounds"] (1759) by Robert Smith, a musical temperament is described where the octave is divided into 50 equal parts – 50edo, in one word. Later, W.S.B. Woolhouse noted it was fairly close to the [[Target_tunings|least squares]] tuning for 5-limit meantone. 50edo, however, is especially interesting from a higher limit point of view. While [[31edo|31edo]] extends meantone with a [[7/4|7/4]] which is nearly pure, 50 has a flat 7/4 but both [[11/8|11/8]] and [[13/8|13/8]] are nearly pure. It is the highest edo that maps 9/8 and 10/9 to the same interval, with two stacked fifths falling almost precisely in the middle of the two. | ||
50edo tempers out 126/125, 225/224 and 3136/3125 in the [[7-limit|7-limit]], indicating it supports septimal meantone; 245/242, 385/384 and 540/539 in the [[11-limit|11-limit]] and 105/104, 144/143 and 196/195 in the [[13-limit|13-limit]], and can be used for even higher limits. Aside from meantone and its extension meanpop, it can be used to advantage for the 15&50 temperament ([http://x31eq.com/cgi-bin/rt.cgi?ets=15%2650&limit=11 Coblack]), and provides the optimal patent val for 11 and 13 limit [[Meantone_family#Septimal meantone-Bimeantone|bimeantone]]. It is also the unique equal temperament tempering out both 81/80 and the [[vishnuzma|vishnuzma]], |23 6 -14>, so that in 50et seven chromatic semitones are a perfect fourth. In 12et by comparison this gives a fifth, in 31et a doubly diminished fifth, and in 19et a diminished fourth. | |||
=Relations= | == Relations == | ||
The 50edo system is related to [[7edo|7edo]], [[12edo|12edo]], [[19edo|19edo]], [[31edo|31edo]] as the next approximation to the "Golden Tone System" ([[Das_Goldene_Tonsystem|Das Goldene Tonsystem]]) of Thorvald Kornerup (and similarly as the next step from 31edo in Joseph Yasser's "[http://books.google.com.au/books/about/A_theory_of_evolving_tonality.html?id=-XUsAAAAMAAJ&redir_esc=y A Theory of Evolving Tonality]"). | The 50edo system is related to [[7edo|7edo]], [[12edo|12edo]], [[19edo|19edo]], [[31edo|31edo]] as the next approximation to the "Golden Tone System" ([[Das_Goldene_Tonsystem|Das Goldene Tonsystem]]) of Thorvald Kornerup (and similarly as the next step from 31edo in Joseph Yasser's "[http://books.google.com.au/books/about/A_theory_of_evolving_tonality.html?id=-XUsAAAAMAAJ&redir_esc=y A Theory of Evolving Tonality]"). | ||
=Intervals= | == Intervals == | ||
{| class="wikitable" | {| class="wikitable center-all right-2 left-3" | ||
|- | |- | ||
! | ! # | ||
! | ! Cents | ||
! | ! Ratios* | ||
! | ! Generator for* | ||
|- | |- | ||
| 0 | | 0 | ||
|0 | | 0 | ||
| 1/1 | |||
| | |||
|- | |- | ||
| 1 | |||
| 24 | |||
| 45/44, 49/48, 56/55, 65/64, 66/65, 78/77, 91/90, 99/98, 100/99, 121/120, 169/168 | |||
| [[Hemimean_clan#Sengagen|Sengagen]] | |||
|- | |- | ||
| 2 | |||
| 48 | |||
| 33/32, 36/35, 50/49, 55/54, 64/63 | |||
| | |||
|- | |- | ||
| 3 | |||
| 72 | |||
| 21/20, 25/24, 26/25, 27/26, 28/27 | |||
| [[Vishnuzmic_family#Vishnu|Vishnu]] (2/oct), [http://x31eq.com/cgi-bin/rt.cgi?ets=15%2650&limit=11 Coblack] (5/oct) | |||
|- | |- | ||
| 4 | |||
| 96 | |||
| 22/21 | |||
| [[Meantone_family#Injera|Injera]] (50d val, 2/oct) | |||
|- | |- | ||
| 5 | |||
| 120 | |||
| 16/15, 15/14, 14/13 | |||
| | |||
|- | |- | ||
| 6 | |||
| 144 | |||
| 13/12, 12/11 | |||
| | |||
|- | |- | ||
| 7 | |||
| 168 | |||
| 11/10 | |||
| | |||
|- | |- | ||
| 8 | |||
| 192 | |||
| 9/8, 10/9 | |||
| | |||
|- | |- | ||
| 9 | |||
| 216 | |||
| 25/22 | |||
| [http://x31eq.com/cgi-bin/rt.cgi?ets=50%2661p&limit=2.3.5.11.13 Tremka], [[Subgroup_temperaments#x2.9.7.11-Machine|Machine]] (50b val) | |||
|- | |- | ||
| 10 | |||
| 240 | |||
| 8/7, 15/13 | |||
| | |||
|- | |- | ||
| 11 | |||
| 264 | |||
| 7/6 | |||
| [[Marvel_temperaments#Septimin-13-limit|Septimin (13-limit)]] | |||
|- | |- | ||
| 12 | |||
| 288 | |||
| 13/11 | |||
| | |||
|- | |- | ||
| 13 | |||
| 312 | |||
| 6/5 | |||
| | |||
|- | |- | ||
| 14 | |||
| 336 | |||
| 27/22, 39/32, 40/33, 49/40 | |||
| | |||
|- | |- | ||
| 15 | |||
| 360 | |||
| 16/13, 11/9 | |||
| | |||
|- | |- | ||
| 16 | |||
| 384 | |||
| 5/4 | |||
| [[Marvel_temperaments#Wizard-11-limit|Wizard]] (2/oct) | |||
|- | |- | ||
| 17 | |||
| 408 | |||
| 14/11 | |||
| [[Ditonmic_family|Ditonic]] | |||
|- | |- | ||
| 18 | |||
| 432 | |||
| 9/7 | |||
| [[Porcupine_family#Hedgehog|Hedgehog]] (50cc val, 2/oct) | |||
|- | |- | ||
| 19 | |||
| 456 | |||
| 13/10 | |||
| [[Starling_temperaments#Bisemidim|Bisemidim]] (2/oct) | |||
|- | |- | ||
| 20 | |||
| 480 | |||
| 33/25, 55/42, 64/49 | |||
| | |||
|- | |- | ||
| 21 | |||
| 504 | |||
| 4/3 | |||
| [[Meantone|Meantone]]/[[Meanpop|Meanpop]] | |||
|- | |- | ||
| 22 | |||
| 528 | |||
| 15/11 | |||
| | |||
|- | |- | ||
| 23 | |||
| 552 | |||
| 11/8, 18/13 | |||
| [[Chromatic_pairs#Barton|Barton]], [[Hemimean_clan#Emka|Emka]] | |||
|- | |- | ||
| 24 | |||
| 576 | |||
| 7/5 | |||
| | |||
|- | |- | ||
| 25 | |||
| 600 | |||
| 63/44, 88/63, 78/55, 55/39 | |||
| | |||
|- | |- | ||
| 26 | |||
| 624 | |||
| 10/7 | |||
| | |||
|- | |- | ||
| 27 | |||
| 648 | |||
| 16/11, 13/9 | |||
| | |||
|- | |- | ||
| 28 | |||
| 672 | |||
| 22/15 | |||
| | |||
|- | |- | ||
| 29 | |||
| 696 | |||
| 3/2 | |||
| | |||
|- | |- | ||
| 30 | |||
| 720 | |||
| 50/33, 84/55, 49/32 | |||
| | |||
|- | |- | ||
| 31 | |||
| 744 | |||
| 20/13 | |||
| | |||
|- | |- | ||
| 32 | |||
| 768 | |||
| 14/9 | |||
| | |||
|- | |- | ||
| 33 | |||
| 792 | |||
| 11/7 | |||
| | |||
|- | |- | ||
| 34 | |||
| 816 | |||
| 8/5 | |||
| | |||
|- | |- | ||
| 35 | |||
| 840 | |||
| 13/8, 18/11 | |||
| | |||
|- | |- | ||
| 36 | |||
| 864 | |||
| 44/27, 64/39, 33/20, 80/49 | |||
| | |||
|- | |- | ||
| 37 | |||
| 888 | |||
| 5/3 | |||
| | |||
|- | |- | ||
| 38 | |||
| 912 | |||
| 22/13 | |||
| | |||
|- | |- | ||
| 39 | |||
| 936 | |||
| 12/7 | |||
| | |||
|- | |- | ||
| 40 | |||
| 960 | |||
| 7/4 | |||
| | |||
|- | |- | ||
| 41 | |||
| 984 | |||
| 44/25 | |||
| | |||
|- | |- | ||
| 42 | |||
| 1008 | |||
| 16/9, 9/5 | |||
| | |||
|- | |- | ||
| 43 | |||
| 1032 | |||
| 20/11 | |||
| | |||
|- | |- | ||
| 44 | |||
| 1056 | |||
| 24/13, 11/6 | |||
| | |||
|- | |- | ||
| 45 | |||
| 1080 | |||
| 15/8, 28/15, 13/7 | |||
| | |||
|- | |- | ||
| 46 | |||
| 1104 | |||
| 21/11 | |||
| | |||
|- | |- | ||
| 47 | |||
| 1128 | |||
| 40/21, 48/25, 25/13, 52/27, 27/14 | |||
| | |||
|- | |- | ||
| 48 | |||
| 1152 | |||
| 64/33, 35/18, 49/25, 108/55, 63/32 | |||
| | |||
|- | |- | ||
| 49 | |||
| 1176 | |||
| 88/45, 96/49, 55/28, 128/65, 65/33, 77/39, 180/91, 196/99, 99/50, 240/121, 336/169 | |||
| | |||
|- | |- | ||
|50 | | 50 | ||
|1200 | | 1200 | ||
|2/1 | | 2/1 | ||
| | | | ||
|} | |} | ||
*Using the 13-limit patent val, except as noted | <nowiki/>* Using the 13-limit patent val, except as noted. | ||
=== | === Selected just intervals by error === | ||
The following table shows how [[15-odd-limit intervals]] are represented in 50edo (ordered by absolute error). Prime harmonics are in '''bold'''; inconsistent intervals are in ''italic''. | |||
{| class="wikitable" | {| class="wikitable center-all" | ||
|+Direct mapping, even if inconsistent | |||
|- | |- | ||
! Interval, complement | |||
! Error (abs, [[cent|¢]]) | |||
|- | |- | ||
| | | '''[[16/13|16/13]], [[13/8|13/8]]''' | ||
| | | '''0.528''' | ||
|- | |- | ||
| [[15/14|15/14]], [[28/15|28/15]] | |||
| 0.557 | |||
|- | |- | ||
| | | '''[[11/8|11/8]], [[16/11|16/11]]''' | ||
| | | '''0.682''' | ||
|- | |- | ||
| [[13/11|13/11]], [[22/13|22/13]] | |||
| 1.210 | |||
|- | |- | ||
| [[13/10|13/10]], [[20/13|20/13]] | |||
| 1.786 | |||
|- | |- | ||
| | | '''[[5/4|5/4]], [[8/5|8/5]]''' | ||
| | | '''2.314''' | ||
|- | |- | ||
| [[7/6|7/6]], [[12/7|12/7]] | |||
| 2.871 | |||
|- | |- | ||
| [[11/10|11/10]], [[20/11|20/11]] | |||
| 2.996 | |||
|- | |- | ||
| [[9/7|9/7]], [[14/9|14/9]] | |||
| 3.084 | |||
|- | |- | ||
| [[6/5|6/5]], [[5/3|5/3]] | |||
| 3.641 | |||
|- | |- | ||
| [[13/12|13/12]], [[24/13|24/13]] | |||
| 5.427 | |||
|- | |- | ||
| [[4/3|4/3]], [[3/2|3/2]] | |||
| 5.955 | |||
|- | |- | ||
| [[7/5|7/5]], [[10/7|10/7]] | |||
| 6.512 | |||
|- | |- | ||
| [[12/11|12/11]], [[11/6|11/6]] | |||
| 6.637 | |||
|- | |- | ||
| [[15/13|15/13]], [[26/15|26/15]] | |||
| 7.741 | |||
|- | |- | ||
| [[16/15|16/15]], [[15/8|15/8]] | |||
| 8.269 | |||
|- | |- | ||
| [[14/13|14/13]], [[13/7|13/7]] | |||
| 8.298 | |||
|- | |- | ||
| | | '''[[8/7|8/7]], [[7/4|7/4]]''' | ||
| | | '''8.826''' | ||
|- | |- | ||
| [[15/11|15/11]], [[22/15|22/15]] | |||
| 8.951 | |||
|- | |- | ||
| [[14/11|14/11]], [[11/7|11/7]] | |||
| 9.508 | |||
|- | |- | ||
| [[10/9|10/9]], [[9/5|9/5]] | |||
| 9.596 | |||
|- | |- | ||
| [[18/13|18/13]], [[13/9|13/9]] | |||
| 11.382 | |||
|- | |- | ||
| | | ''[[11/9|11/9]], [[18/11|18/11]]'' | ||
| | | ''11.408'' | ||
|- | |- | ||
| [[9/8|9/8]], [[16/9|16/9]] | |||
| 11.910 | |||
|} | |} | ||
{| class="wikitable center-all" | |||
|+Patent val mapping | |||
{| class="wikitable" | |||
|- | |- | ||
! Interval, complement | |||
! Error (abs, [[cent|¢]]) | |||
|- | |- | ||
| | | '''[[16/13|16/13]], [[13/8|13/8]]''' | ||
| | | '''0.528''' | ||
|- | |- | ||
| [[15/14|15/14]], [[28/15|28/15]] | |||
| 0.557 | |||
|- | |- | ||
| | | '''[[11/8|11/8]], [[16/11|16/11]]''' | ||
| | | '''0.682''' | ||
|- | |- | ||
| [[13/11|13/11]], [[22/13|22/13]] | |||
| 1.210 | |||
|- | |- | ||
| [[13/10|13/10]], [[20/13|20/13]] | |||
| 1.786 | |||
|- | |- | ||
| | | '''[[5/4|5/4]], [[8/5|8/5]]''' | ||
| | | '''2.314''' | ||
|- | |- | ||
| [[7/6|7/6]], [[12/7|12/7]] | |||
| 2.871 | |||
|- | |- | ||
| [[11/10|11/10]], [[20/11|20/11]] | |||
| 2.996 | |||
|- | |- | ||
| [[9/7|9/7]], [[14/9|14/9]] | |||
| 3.084 | |||
|- | |- | ||
| [[6/5|6/5]], [[5/3|5/3]] | |||
| 3.641 | |||
|- | |- | ||
| [[13/12|13/12]], [[24/13|24/13]] | |||
| 5.427 | |||
|- | |- | ||
| [[4/3|4/3]], [[3/2|3/2]] | |||
| 5.955 | |||
|- | |- | ||
| [[7/5|7/5]], [[10/7|10/7]] | |||
| 6.512 | |||
|- | |- | ||
| [[12/11|12/11]], [[11/6|11/6]] | |||
| 6.637 | |||
|- | |- | ||
| [[15/13|15/13]], [[26/15|26/15]] | |||
| 7.741 | |||
|- | |- | ||
| [[16/15|16/15]], [[15/8|15/8]] | |||
| 8.269 | |||
|- | |- | ||
| [[14/13|14/13]], [[13/7|13/7]] | |||
| 8.298 | |||
|- | |- | ||
| | | '''[[8/7|8/7]], [[7/4|7/4]]''' | ||
| | | '''8.826''' | ||
|- | |- | ||
| [[15/11|15/11]], [[22/15|22/15]] | |||
| 8.951 | |||
|- | |- | ||
| [[14/11|14/11]], [[11/7|11/7]] | |||
| 9.508 | |||
|- | |- | ||
| [[10/9|10/9]], [[9/5|9/5]] | |||
| 9.596 | |||
|- | |- | ||
| [[18/13|18/13]], [[13/9|13/9]] | |||
| 11.382 | |||
|- | |- | ||
| [[9/8|9/8]], [[16/9|16/9]] | |||
| 11.910 | |||
|- | |- | ||
| | | ''[[11/9|11/9]], [[18/11|18/11]]'' | ||
| | | ''12.592'' | ||
|} | |} | ||
=Commas= | == Commas == | ||
50 EDO tempers out the following commas. (Note: This assumes the val | 50 EDO tempers out the following commas. (Note: This assumes the val {{val|50 79 116 140 173 185 204 212 226}}, comma values in cents rounded to 2 decimal places.) This list is not all-inclusive, and is based on the interval table from Scala version 2.2. | ||
{| class="wikitable" | {| class="wikitable center-all left-1 right-2" | ||
|- | |- | ||
! | ! Monzo | ||
! | ! Cents | ||
! | ! Ratio | ||
! | ! Name 1 | ||
! | ! Name 2 | ||
|- | |- | ||
| |<nowiki> | -4 4 -1 </nowiki>> | | |<nowiki> | -4 4 -1 </nowiki>> | ||
| 21.51 | |||
| 81/80 | |||
| Syntonic comma | |||
| Didymus comma | |||
|- | |- | ||
| |<nowiki> | -27 -2 13 </nowiki>> | | |<nowiki> | -27 -2 13 </nowiki>> | ||
| 18.17 | |||
| | |||
| Ditonma | |||
| | |||
|- | |- | ||
| |<nowiki> | 23 6 -14 </nowiki>> | | |<nowiki> | 23 6 -14 </nowiki>> | ||
| 3.34 | |||
| | |||
| Vishnu comma | |||
| | |||
|- | |- | ||
| |<nowiki> | 1 2 -3 1 </nowiki>> | | |<nowiki> | 1 2 -3 1 </nowiki>> | ||
| 13.79 | |||
| 126/125 | |||
| Starling comma | |||
| Small septimal comma | |||
|- | |- | ||
| |<nowiki> | -5 2 2 -1 </nowiki>> | | |<nowiki> | -5 2 2 -1 </nowiki>> | ||
| 7.71 | |||
| 225/224 | |||
| Septimal kleisma | |||
| Marvel comma | |||
|- | |- | ||
| |<nowiki> | 6 0 -5 2 </nowiki>> | | |<nowiki> | 6 0 -5 2 </nowiki>> | ||
| 6.08 | |||
| 3136/3125 | |||
| Hemimean | |||
| Middle second comma | |||
|- | |- | ||
| |<nowiki> | -6 -8 2 5 </nowiki>> | | |<nowiki> | -6 -8 2 5 </nowiki>> | ||
| 1.12 | |||
| | |||
| Wizma | |||
| | |||
|- | |- | ||
| |<nowiki> |-11 2 7 -3 </nowiki>> | | |<nowiki> |-11 2 7 -3 </nowiki>> | ||
| 1.63 | |||
| | |||
| Meter | |||
| | |||
|- | |- | ||
| |<nowiki> | 11 -10 -10 10 </nowiki>> | | |<nowiki> | 11 -10 -10 10 </nowiki>> | ||
| 5.57 | |||
| | |||
| Linus | |||
| | |||
|- | |- | ||
| |<nowiki> |-13 10 0 -1 </nowiki>> | | |<nowiki> |-13 10 0 -1 </nowiki>> | ||
| 50.72 | |||
| 59049/57344 | |||
| Harrison's comma | |||
| | |||
|- | |- | ||
| |<nowiki> | 2 3 1 -2 -1 </nowiki>> | | |<nowiki> | 2 3 1 -2 -1 </nowiki>> | ||
| 3.21 | |||
| 540/539 | |||
| Swets' comma | |||
| Swetisma | |||
|- | |- | ||
| |<nowiki> | -3 4 -2 -2 2 </nowiki>> | | |<nowiki> | -3 4 -2 -2 2 </nowiki>> | ||
| 0.18 | |||
| 9801/9800 | |||
| Kalisma | |||
| Gauss' comma | |||
|- | |- | ||
| |<nowiki> | 5 -1 3 0 -3 </nowiki>> | | |<nowiki> | 5 -1 3 0 -3 </nowiki>> | ||
| 3.03 | |||
| 4000/3993 | |||
| Wizardharry | |||
| Undecimal schisma | |||
|- | |- | ||
| |<nowiki> | -7 -1 1 1 1 </nowiki>> | | |<nowiki> | -7 -1 1 1 1 </nowiki>> | ||
| 4.50 | |||
| 385/384 | |||
| Keenanisma | |||
| Undecimal kleisma | |||
|- | |- | ||
| |<nowiki> | -1 0 1 2 -2 </nowiki>> | | |<nowiki> | -1 0 1 2 -2 </nowiki>> | ||
| 21.33 | |||
| 245/242 | |||
| Cassacot | |||
| | |||
|- | |- | ||
| |<nowiki> | 2 -1 0 1 -2 1 </nowiki>> | | |<nowiki> | 2 -1 0 1 -2 1 </nowiki>> | ||
| 4.76 | |||
| 364/363 | |||
| Gentle comma | |||
| | |||
|- | |- | ||
| |<nowiki> | 2 -1 -1 2 0 -1 </nowiki>> | | |<nowiki> | 2 -1 -1 2 0 -1 </nowiki>> | ||
| 8.86 | |||
| 196/195 | |||
| Mynucuma | |||
| | |||
|- | |- | ||
| |<nowiki> | 2 3 0 -1 1 -2 </nowiki>> | | |<nowiki> | 2 3 0 -1 1 -2 </nowiki>> | ||
| 7.30 | |||
| 1188/1183 | |||
| Kestrel Comma | |||
| | |||
|- | |- | ||
| |<nowiki> | 3 0 2 0 1 -3 </nowiki>> | | |<nowiki> | 3 0 2 0 1 -3 </nowiki>> | ||
| 2.36 | |||
| 2200/2197 | |||
| Petrma | |||
| Parizek comma | |||
|- | |- | ||
| |<nowiki> | -3 1 1 1 0 -1 </nowiki>> | | |<nowiki> | -3 1 1 1 0 -1 </nowiki>> | ||
| 16.57 | |||
| 105/104 | |||
| Animist comma | |||
| Small tridecimal comma | |||
|- | |- | ||
| |<nowiki> | 4 2 0 0 -1 -1 </nowiki>> | | |<nowiki> | 4 2 0 0 -1 -1 </nowiki>> | ||
| 12.06 | |||
| 144/143 | |||
| Grossma | |||
| | |||
|- | |- | ||
| |<nowiki> | 3 -2 0 1 -1 -1 0 0 1 </nowiki>> | | |<nowiki> | 3 -2 0 1 -1 -1 0 0 1 </nowiki>> | ||
| 1.34 | |||
| 1288/1287 | |||
| Triaphonisma | |||
| | |||
|} | |} | ||
=Music= | == Music == | ||
[http://micro.soonlabel.com/gene_ward_smith/Others/Meneghin/Claudi-Meneghin-Twinkle-canon-50-edo.mp3 Twinkle canon – 50 edo] by [http://soonlabel.com/xenharmonic/archives/573 Claudi Meneghin] | [http://micro.soonlabel.com/gene_ward_smith/Others/Meneghin/Claudi-Meneghin-Twinkle-canon-50-edo.mp3 Twinkle canon – 50 edo] by [http://soonlabel.com/xenharmonic/archives/573 Claudi Meneghin] | ||
Line 603: | Line 600: | ||
[https://soundcloud.com/camtaylor-1/fragment-in-fifty Fragment in Fifty] by Cam Taylor | [https://soundcloud.com/camtaylor-1/fragment-in-fifty Fragment in Fifty] by Cam Taylor | ||
=Additional reading= | == Additional reading == | ||
[http://www.archive.org/details/harmonicsorphilo00smit Robert Smith's book online] | [http://www.archive.org/details/harmonicsorphilo00smit Robert Smith's book online] | ||
Line 611: | Line 608: | ||
[http://iamcamtaylor.wordpress.com/ iamcamtaylor - Blog on 50EDO and extended meantone theory by Cam Taylor] | [http://iamcamtaylor.wordpress.com/ iamcamtaylor - Blog on 50EDO and extended meantone theory by Cam Taylor] | ||
[[Category:50edo]] | [[Category:50edo]] | ||
[[Category:edo]] | [[Category:edo]] |