138edo: Difference between revisions
Created page with "'''138edo''' is the equal division of the octave into 138 parts of 8.6957 cents each. It is inconsistent to the 5-limit and higher limit, with three mappings possi..." Tags: Mobile edit Mobile web edit |
No edit summary Tags: Mobile edit Mobile web edit |
||
Line 1: | Line 1: | ||
'''138edo''' is the [[EDO|equal division of the octave]] into 138 parts of 8.6957 [[cent]]s each. It is inconsistent to the 5-limit and higher limit, with three mappings possible for the 13-limit: <138 219 320 387 477 511| (optimal patent val), <138 218 320 387 477 510| (138bf), and <138 219 321 388 478 511| (138cde). Using the optimal patent val, it tempers out the shibboleth comma, 1953125/1889568 and the misty comma, 67108864/66430125 in the 5-limit; 875/864, 1029/1024, and 1647086/1594323 in the 7-limit; 896/891, 1331/1323, and 1375/1372 in the 11-limit; 196/195, 275/273, and 1575/1573 in the 13-limit. Using the 138bf val, it tempers out the [[syntonic comma]], 81/80 and 2288818359375/2199023255552 in the 5-limit; 2401/2400, 2430/2401, and 9765625/9633792 in the 7-limit; 385/384, 1375/1372, 1944/1925, and 9375/9317 in the 11-limit; 625/624, 975/968, 1001/1000, and 1188/1183 in the 13-limit. Using the 138cde val, it tempers out the [[Diaschismic family|diaschisma]], 2048/2025 and the [[Sensipent family|sensipent comma]], 78732/78125 in the 5-limit; 1728/1715, 10976/10935, and 250047/250000 in the 7-limit; 176/175, 540/539, 896/891 | '''138edo''' is the [[EDO|equal division of the octave]] into 138 parts of 8.6957 [[cent]]s each. It is inconsistent to the 5-limit and higher limit, with three mappings possible for the 13-limit: <138 219 320 387 477 511| (optimal patent val), <138 218 320 387 477 510| (138bf), and <138 219 321 388 478 511| (138cde). Using the optimal patent val, it tempers out the shibboleth comma, 1953125/1889568 and the misty comma, 67108864/66430125 in the 5-limit; 875/864, 1029/1024, and 1647086/1594323 in the 7-limit; 896/891, 1331/1323, and 1375/1372 in the 11-limit; 196/195, 275/273, and 1575/1573 in the 13-limit. Using the 138bf val, it tempers out the [[syntonic comma]], 81/80 and 2288818359375/2199023255552 in the 5-limit; 2401/2400, 2430/2401, and 9765625/9633792 in the 7-limit; 385/384, 1375/1372, 1944/1925, and 9375/9317 in the 11-limit; 625/624, 975/968, 1001/1000, and 1188/1183 in the 13-limit. Using the 138cde val, it tempers out the [[Diaschismic family|diaschisma]], 2048/2025 and the [[Sensipent family|sensipent comma]], 78732/78125 in the 5-limit; 1728/1715, 10976/10935, and 250047/250000 in the 7-limit; 176/175, 540/539, and 896/891 in the 11-limit; 351/350, 352/351, 364/363, 640/637, and 2197/2187 in the 13-limit. | ||
138edo supports the 2.7/5.11/5.13/3 subgroup temperament. | |||
[[Category:Edo]] | [[Category:Edo]] |