|
|
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | =<span style="color: #003838; font-family: 'Times New Roman',Times,serif; font-size: 113%;">193 tone equal temperament</span>= |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| |
| : This revision was by author [[User:Osmiorisbendi|Osmiorisbendi]] and made on <tt>2013-05-06 04:53:53 UTC</tt>.<br>
| |
| : The original revision id was <tt>429133420</tt>.<br>
| |
| : The revision comment was: <tt></tt><br>
| |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| |
| <h4>Original Wikitext content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">=<span style="color: #003838; font-family: 'Times New Roman',Times,serif; font-size: 113%;">193 tone equal temperament</span>=
| |
|
| |
|
| The //193-EDO// divides the octave into 193 equal parts of 6.21762 cents each. It provides the [[optimal patent val]] for [[Kleismic family#Sqrtphi|sqrtphi temperament]] in the 13-, 17- and 19-limits, and for 13-limit [[Swetismic temperaments#Minos-13-limit|minos]] and [[Mirkwai family#Indra-Vish|vish]] temperaments. | | The ''193-EDO'' divides the octave into 193 equal parts of 6.21762 cents each. It provides the [[Optimal_patent_val|optimal patent val]] for [[Kleismic_family#Sqrtphi|sqrtphi temperament]] in the 13-, 17- and 19-limits, and for 13-limit [[Swetismic_temperaments#Minos-13-limit|minos]] and [[Mirkwai_family#Indra-Vish|vish]] temperaments. |
|
| |
|
| Approximation of the intervals: | | Approximation of the intervals: |
| Square root of Pi: **159\193** (988.60104 cents), and
| |
| Phi: **134\193** (833.16062 cents), both inside in the [[7L 2s|superdiatonic]] scale: 25 25 25 9 25 25 25 25 9
| |
|
| |
|
| 193edo is the 44th [[prime numbers|prime]] EDO.</pre></div>
| | Square root of Pi: '''159\193''' (988.60104 cents), and |
| <h4>Original HTML content:</h4>
| | |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>193edo</title></head><body><!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="x193 tone equal temperament"></a><!-- ws:end:WikiTextHeadingRule:0 --><span style="color: #003838; font-family: 'Times New Roman',Times,serif; font-size: 113%;">193 tone equal temperament</span></h1>
| | Phi: '''134\193''' (833.16062 cents), both inside in the [[7L_2s|superdiatonic]] scale: 25 25 25 9 25 25 25 25 9 |
| <br />
| | |
| The <em>193-EDO</em> divides the octave into 193 equal parts of 6.21762 cents each. It provides the <a class="wiki_link" href="/optimal%20patent%20val">optimal patent val</a> for <a class="wiki_link" href="/Kleismic%20family#Sqrtphi">sqrtphi temperament</a> in the 13-, 17- and 19-limits, and for 13-limit <a class="wiki_link" href="/Swetismic%20temperaments#Minos-13-limit">minos</a> and <a class="wiki_link" href="/Mirkwai%20family#Indra-Vish">vish</a> temperaments.<br />
| | 193edo is the 44th [[prime_numbers|prime]] EDO. |
| <br />
| | [[Category:sqrtphi]] |
| Approximation of the intervals:<br />
| |
| Square root of Pi: <strong>159\193</strong> (988.60104 cents), and<br /> | |
| Phi: <strong>134\193</strong> (833.16062 cents), both inside in the <a class="wiki_link" href="/7L%202s">superdiatonic</a> scale: 25 25 25 9 25 25 25 25 9<br /> | |
| <br />
| |
| 193edo is the 44th <a class="wiki_link" href="/prime%20numbers">prime</a> EDO.</body></html></pre></div> | |
193 tone equal temperament
The 193-EDO divides the octave into 193 equal parts of 6.21762 cents each. It provides the optimal patent val for sqrtphi temperament in the 13-, 17- and 19-limits, and for 13-limit minos and vish temperaments.
Approximation of the intervals:
Square root of Pi: 159\193 (988.60104 cents), and
Phi: 134\193 (833.16062 cents), both inside in the superdiatonic scale: 25 25 25 9 25 25 25 25 9
193edo is the 44th prime EDO.