Würschmidt family: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>genewardsmith
**Imported revision 303066384 - Original comment: **
Wikispaces>genewardsmith
**Imported revision 321827204 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2012-02-19 00:06:34 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2012-04-17 20:55:06 UTC</tt>.<br>
: The original revision id was <tt>303066384</tt>.<br>
: The original revision id was <tt>321827204</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 99: Line 99:
EDOs: 31, 99e, 130, 650ce, 811ce
EDOs: 31, 99e, 130, 650ce, 811ce
Badness: 0.0211
Badness: 0.0211
&lt;span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: -25px; width: 1px;"&gt;around 775.489 which is approximately&lt;/span&gt;


==Hemiwur==
==Hemiwur==
Line 109: Line 108:
EDOs: 6, 31, 68, 99, 130e, 229e
EDOs: 6, 31, 68, 99, 130e, 229e
Badness: 0.0293
Badness: 0.0293
===13-limit===
Commas: 121/120, 176/175, 196/195, 275/273
POTE generator: ~28/25 = 194.004
Map: [&lt;1 15 4 7 11 -3|, &lt;0 -16 -2 -5 -9 8|]
EDOs: 6, 31, 68, 99f, 167ef
Badness: 0.0284


=Relationships to other temperaments=
=Relationships to other temperaments=
&lt;span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: -25px; width: 1px;"&gt;around 775.489 which is approximately&lt;/span&gt;
2-Würschmidt, the temperament with all the same commas as Würschmidt but a generator of twice the size, is equivalent to [[xenharmonic/skwares|skwares]] as a 2.3.7.11 temperament.
2-Würschmidt, the temperament with all the same commas as Würschmidt but a generator of twice the size, is equivalent to [[xenharmonic/skwares|skwares]] as a 2.3.7.11 temperament.
</pre></div>
</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Würschmidt family&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:24:&amp;lt;img id=&amp;quot;wikitext@@toc@@normal&amp;quot; class=&amp;quot;WikiMedia WikiMediaToc&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/normal?w=225&amp;amp;h=100&amp;quot;/&amp;gt; --&gt;&lt;div id="toc"&gt;&lt;h1 class="nopad"&gt;Table of Contents&lt;/h1&gt;&lt;!-- ws:end:WikiTextTocRule:24 --&gt;&lt;!-- ws:start:WikiTextTocRule:25: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Würschmidt"&gt;Würschmidt&lt;/a&gt;&lt;/div&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Würschmidt family&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:26:&amp;lt;img id=&amp;quot;wikitext@@toc@@normal&amp;quot; class=&amp;quot;WikiMedia WikiMediaToc&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/normal?w=225&amp;amp;h=100&amp;quot;/&amp;gt; --&gt;&lt;div id="toc"&gt;&lt;h1 class="nopad"&gt;Table of Contents&lt;/h1&gt;&lt;!-- ws:end:WikiTextTocRule:26 --&gt;&lt;!-- ws:start:WikiTextTocRule:27: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Würschmidt"&gt;Würschmidt&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:25 --&gt;&lt;!-- ws:start:WikiTextTocRule:26: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Würschmidt-Seven limit children"&gt;Seven limit children&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:27 --&gt;&lt;!-- ws:start:WikiTextTocRule:28: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Würschmidt-Seven limit children"&gt;Seven limit children&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:26 --&gt;&lt;!-- ws:start:WikiTextTocRule:27: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Würschmidt"&gt;Würschmidt&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:28 --&gt;&lt;!-- ws:start:WikiTextTocRule:29: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Würschmidt"&gt;Würschmidt&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:27 --&gt;&lt;!-- ws:start:WikiTextTocRule:28: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Würschmidt-11-limit"&gt;11-limit&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:29 --&gt;&lt;!-- ws:start:WikiTextTocRule:30: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Würschmidt-11-limit"&gt;11-limit&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:28 --&gt;&lt;!-- ws:start:WikiTextTocRule:29: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Würschmidt-13-limit"&gt;13-limit&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:30 --&gt;&lt;!-- ws:start:WikiTextTocRule:31: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Würschmidt-13-limit"&gt;13-limit&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:29 --&gt;&lt;!-- ws:start:WikiTextTocRule:30: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Worschmidt"&gt;Worschmidt&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:31 --&gt;&lt;!-- ws:start:WikiTextTocRule:32: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Worschmidt"&gt;Worschmidt&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:30 --&gt;&lt;!-- ws:start:WikiTextTocRule:31: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Worschmidt-11-limit"&gt;11-limit&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:32 --&gt;&lt;!-- ws:start:WikiTextTocRule:33: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Worschmidt-11-limit"&gt;11-limit&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:31 --&gt;&lt;!-- ws:start:WikiTextTocRule:32: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Whirrschmidt"&gt;Whirrschmidt&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:33 --&gt;&lt;!-- ws:start:WikiTextTocRule:34: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Whirrschmidt"&gt;Whirrschmidt&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:32 --&gt;&lt;!-- ws:start:WikiTextTocRule:33: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Hemiwürschmidt"&gt;Hemiwürschmidt&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:34 --&gt;&lt;!-- ws:start:WikiTextTocRule:35: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Hemiwürschmidt"&gt;Hemiwürschmidt&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:33 --&gt;&lt;!-- ws:start:WikiTextTocRule:34: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Hemiwürschmidt-11-limit"&gt;11-limit&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:35 --&gt;&lt;!-- ws:start:WikiTextTocRule:36: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Hemiwürschmidt-11-limit"&gt;11-limit&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:34 --&gt;&lt;!-- ws:start:WikiTextTocRule:35: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Hemiwürschmidt-Hemiwur"&gt;Hemiwur&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:36 --&gt;&lt;!-- ws:start:WikiTextTocRule:37: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Hemiwürschmidt-Hemiwur"&gt;Hemiwur&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:35 --&gt;&lt;!-- ws:start:WikiTextTocRule:36: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Relationships to other temperaments"&gt;Relationships to other temperaments&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:37 --&gt;&lt;!-- ws:start:WikiTextTocRule:38: --&gt;&lt;div style="margin-left: 3em;"&gt;&lt;a href="#Hemiwürschmidt-Hemiwur-13-limit"&gt;13-limit&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:36 --&gt;&lt;!-- ws:start:WikiTextTocRule:37: --&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:38 --&gt;&lt;!-- ws:start:WikiTextTocRule:39: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Relationships to other temperaments"&gt;Relationships to other temperaments&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:37 --&gt;&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Würschmidt"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Würschmidt&lt;/h1&gt;
&lt;!-- ws:end:WikiTextTocRule:39 --&gt;&lt;!-- ws:start:WikiTextTocRule:40: --&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:40 --&gt;&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Würschmidt"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Würschmidt&lt;/h1&gt;
  The &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/5-limit"&gt;5-limit&lt;/a&gt; parent comma for the würschmidt family is 393216/390625, known as Würschmidt's comma, and named after José Würschmidt, Its &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/monzo"&gt;monzo&lt;/a&gt; is |17 1 -8&amp;gt;, and flipping that yields &amp;lt;&amp;lt;8 1 17|| for the wedgie. This tells us the &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/generator"&gt;generator&lt;/a&gt; is a major third, and that to get to the interval class of fifths will require eight of these. In fact, (5/4)^8 * 393216/390625 = 6. 10\31, 11\34 or 21\65 are possible generators and other tunings include 96edo, 99edo and 164edo. Another tuning solution is to sharpen the major third by 1/8th of a Würschmidt comma, which is to say by 1.43 cents, and thereby achieve pure fifths; this is the &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/minimax%20tuning"&gt;minimax tuning&lt;/a&gt;. Würschmidt is well-supplied with MOS scales, with 10, 13, 16, 19, 22, 25, 28, 31 and 34 note &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOS"&gt;MOS&lt;/a&gt; all possibilities.&lt;br /&gt;
  The &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/5-limit"&gt;5-limit&lt;/a&gt; parent comma for the würschmidt family is 393216/390625, known as Würschmidt's comma, and named after José Würschmidt, Its &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/monzo"&gt;monzo&lt;/a&gt; is |17 1 -8&amp;gt;, and flipping that yields &amp;lt;&amp;lt;8 1 17|| for the wedgie. This tells us the &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/generator"&gt;generator&lt;/a&gt; is a major third, and that to get to the interval class of fifths will require eight of these. In fact, (5/4)^8 * 393216/390625 = 6. 10\31, 11\34 or 21\65 are possible generators and other tunings include 96edo, 99edo and 164edo. Another tuning solution is to sharpen the major third by 1/8th of a Würschmidt comma, which is to say by 1.43 cents, and thereby achieve pure fifths; this is the &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/minimax%20tuning"&gt;minimax tuning&lt;/a&gt;. Würschmidt is well-supplied with MOS scales, with 10, 13, 16, 19, 22, 25, 28, 31 and 34 note &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOS"&gt;MOS&lt;/a&gt; all possibilities.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Line 220: Line 229:
EDOs: 31, 99e, 130, 650ce, 811ce&lt;br /&gt;
EDOs: 31, 99e, 130, 650ce, 811ce&lt;br /&gt;
Badness: 0.0211&lt;br /&gt;
Badness: 0.0211&lt;br /&gt;
&lt;span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: -25px; width: 1px;"&gt;around 775.489 which is approximately&lt;/span&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:20:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc10"&gt;&lt;a name="Hemiwürschmidt-Hemiwur"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:20 --&gt;Hemiwur&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:20:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc10"&gt;&lt;a name="Hemiwürschmidt-Hemiwur"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:20 --&gt;Hemiwur&lt;/h2&gt;
Line 231: Line 239:
Badness: 0.0293&lt;br /&gt;
Badness: 0.0293&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:22:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc11"&gt;&lt;a name="Relationships to other temperaments"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:22 --&gt;Relationships to other temperaments&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:22:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc11"&gt;&lt;a name="Hemiwürschmidt-Hemiwur-13-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:22 --&gt;13-limit&lt;/h3&gt;
Commas: 121/120, 176/175, 196/195, 275/273&lt;br /&gt;
&lt;br /&gt;
POTE generator: ~28/25 = 194.004&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;1 15 4 7 11 -3|, &amp;lt;0 -16 -2 -5 -9 8|]&lt;br /&gt;
EDOs: 6, 31, 68, 99f, 167ef&lt;br /&gt;
Badness: 0.0284&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:24:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc12"&gt;&lt;a name="Relationships to other temperaments"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:24 --&gt;Relationships to other temperaments&lt;/h1&gt;
&lt;span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: -25px; width: 1px;"&gt;around 775.489 which is approximately&lt;/span&gt;&lt;br /&gt;
2-Würschmidt, the temperament with all the same commas as Würschmidt but a generator of twice the size, is equivalent to &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/skwares"&gt;skwares&lt;/a&gt; as a 2.3.7.11 temperament.&lt;/body&gt;&lt;/html&gt;</pre></div>
2-Würschmidt, the temperament with all the same commas as Würschmidt but a generator of twice the size, is equivalent to &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/skwares"&gt;skwares&lt;/a&gt; as a 2.3.7.11 temperament.&lt;/body&gt;&lt;/html&gt;</pre></div>

Revision as of 20:55, 17 April 2012

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author genewardsmith and made on 2012-04-17 20:55:06 UTC.
The original revision id was 321827204.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

[[toc]]
=Würschmidt= 
The [[xenharmonic/5-limit|5-limit]] parent comma for the würschmidt family is 393216/390625, known as Würschmidt's comma, and named after José Würschmidt, Its [[xenharmonic/monzo|monzo]] is |17 1 -8>, and flipping that yields <<8 1 17|| for the wedgie. This tells us the [[xenharmonic/generator|generator]] is a major third, and that to get to the interval class of fifths will require eight of these. In fact, (5/4)^8 * 393216/390625 = 6. 10\31, 11\34 or 21\65 are possible generators and other tunings include 96edo, 99edo and 164edo. Another tuning solution is to sharpen the major third by 1/8th of a Würschmidt comma, which is to say by 1.43 cents, and thereby achieve pure fifths; this is the [[xenharmonic/minimax tuning|minimax tuning]]. Würschmidt is well-supplied with MOS scales, with 10, 13, 16, 19, 22, 25, 28, 31 and 34 note [[xenharmonic/MOS|MOS]] all possibilities.

[[xenharmonic/POTE tuning|POTE generator]]: 387.799

Map: [<1 7 3|, <0 -8 -1|]

EDOs: [[xenharmonic/31edo|31]], [[xenharmonic/34edo|34]], [[xenharmonic/65edo|65]], [[xenharmonic/99edo|99]], [[xenharmonic/164edo|164]], [[xenharmonic/721edo|721c]], [[xenharmonic/885edo|885c]]

==Seven limit children== 
The second comma of the [[xenharmonic/Normal lists|normal comma list]] defines which 7-limit family member we are looking at. Wurschmidt adds |12 3 -6 -1>, worschmidt adds 65625/65536 = |-16 1 5 1>, whirrschmidt adds 4375/4374 = |-1 -7 4 1> and hemiwuerschmidt adds 6144/6125 = |11 1 -3 -2>.

=Würschmidt= 
Würschmidt, aside from the commas listed above, also tempers out 225/224. [[xenharmonic/31edo|31edo]] or [[xenharmonic/127edo|127edo]] can be used as tunings. Würschmidt has <<8 1 18 -17 6 39|| for a wedgie. It extends naturally to an 11-limit version <<8 1 18 20 ,,,|| which also tempers out 99/98, 176/175 and 243/242. [[xenharmonic/127edo|127edo]] is again an excellent tuning for 11-limit wurschmidt, as well as for minerva, the 11-limit rank three temperament tempering out 99/98 and 176/175.

Commas: 225/224, 8748/8575

[[xenharmonic/POTE tuning|POTE generator]]: 387.383

Map: [<1 7 3 15|, <0 -8 -1 -18|]
EDOs: [[xenharmonic/31edo|31]], [[xenharmonic/96edo|96]], [[xenharmonic/127edo|127]], [[xenharmonic/285edo|28bd]], [[xenharmonic/412edo|412bd]]
Badness: 0.0508

==11-limit== 
Commas: 99/98, 176/175, 243/242

POTE generator: ~5/4 = 387.447

Map: [<1 7 3 15 17|, <0 -8 -1 -18 -20|]
EDOs: 31, 65d, 96, 127, 223d
Badness: 0.0244

==13-limit==
Commas: 99/98, 144/143, 176/175, 275/273

POTE generator: ~5/4 = 387.626

Map: [<1 7 3 15 17 1|, <0 -8 -1 -18 -20 4|]
EDOs: 31, 65d, 161df
Badness: 0.0236

=Worschmidt= 
Worschmidt tempers out 126/125 rather than 225/224, and can use [[xenharmonic/31edo|31edo]], [[xenharmonic/34edo|34edo]], or [[xenharmonic/127edo|127edo]] as a tuning. If 127 is used, note that the val is <127 201 295 356| and not <127 201 295 357| as with wurschmidt. The wedgie now is <<8 1 -13 -17 -43 -33|. In practice, of course, both mappings could be used ambiguously, which might be an interesting avenue for someone to explore.

Commas: 126/125, 33075/32768

[[xenharmonic/POTE tuning|POTE generator]]: 387.392

Map: [<1 7 3 -6|, <0 -8 -1 13|]
EDOs: [[xenharmonic/31edo|31]], [[xenharmonic/65edo|65]], [[xenharmonic/96edo|96d]], [[xenharmonic/127edo|127d]]
Badness: 0.0646

==11-limit== 
Commas: 126/125, 243/242, 385/384

POTE generator: ~5/4 = 387.407

Map: [<1 7 3 -6 17|, <0 -8 -1 13 -20|]
EDOs: 31, 65, 96d, 127d
Badness: 0.0334

=Whirrschmidt= 
[[xenharmonic/99edo|99edo]] is such a good tuning for whirrschimdt that we hardly need look any farther. Unfortunately, the temperament while accurate is complex, with <<8 1 52 -17 60 118|| for a wedgie.

Commas: 4375/4374, 393216/390625

[[xenharmonic/POTE tuning|POTE generator]]: 387.881

Map: [<1 7 3 38|, <0 -8 -1 -52|]

EDOs: [[xenharmonic/31edo|31]], [[xenharmonic/34edo|34]], [[xenharmonic/65edo|65]], [[xenharmonic/99edo|99]]

=Hemiwürschmidt= 
Hemiwürschmidt, which splits the major third in two and uses that for a generator, is the most important of these temperaments even with the rather large complexity for the fifth. It tempers out 3136/3125, 6144/6125 and 2401/2400. [[xenharmonic/68edo|68edo]], [[xenharmonic/99edo|99edo]] and [[xenharmonic/130edo|130edo]] can all be used as tunings, but 130 is not only the most accurate, it shows how hemiwürschmidt extends to a higher limit temperament, <<16 2 5 40 -39 -49 -48 28...

Commas: 2401/2400, 3136/3125

[[xenharmonic/POTE tuning|POTE generator]]: ~28/25 = 193.898

Map: [<1 15 4 7|, <0 -16 -2 -5|]
<<16 2 5 -34 -37 6||
EDOs: [[xenharmonic/6edo|6]], [[xenharmonic/31edo|31]], [[xenharmonic/37edo|37]], [[xenharmonic/68edo|68]], [[xenharmonic/99edo|99]], [[xenharmonic/229edo|229]], [[xenharmonic/328edo|328]], [[xenharmonic/557edo|557c]], [[xenharmonic/885edo|885c]]
Badness: 0.0203

==11-limit== 
Commas: 243/242, 441/440, 3136/3125

[[xenharmonic/POTE tuning|POTE generator]]: ~28/25 = 193.840

Map: [<1 15 4 7 37|, <0 -16 -2 -5 -40|]
EDOs: 31, 99e, 130, 650ce, 811ce
Badness: 0.0211

==Hemiwur==
Commas: 121/120, 176/175, 1375/1372

POTE generator: ~28/25 = 193.884

Map: [<1 15 4 7 11|, <0 -16 -2 -5 -9|]
EDOs: 6, 31, 68, 99, 130e, 229e
Badness: 0.0293

===13-limit===
Commas: 121/120, 176/175, 196/195, 275/273

POTE generator: ~28/25 = 194.004

Map: [<1 15 4 7 11 -3|, <0 -16 -2 -5 -9 8|]
EDOs: 6, 31, 68, 99f, 167ef
Badness: 0.0284

=Relationships to other temperaments=
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: -25px; width: 1px;">around 775.489 which is approximately</span>
2-Würschmidt, the temperament with all the same commas as Würschmidt but a generator of twice the size, is equivalent to [[xenharmonic/skwares|skwares]] as a 2.3.7.11 temperament.

Original HTML content:

<html><head><title>Würschmidt family</title></head><body><!-- ws:start:WikiTextTocRule:26:&lt;img id=&quot;wikitext@@toc@@normal&quot; class=&quot;WikiMedia WikiMediaToc&quot; title=&quot;Table of Contents&quot; src=&quot;/site/embedthumbnail/toc/normal?w=225&amp;h=100&quot;/&gt; --><div id="toc"><h1 class="nopad">Table of Contents</h1><!-- ws:end:WikiTextTocRule:26 --><!-- ws:start:WikiTextTocRule:27: --><div style="margin-left: 1em;"><a href="#Würschmidt">Würschmidt</a></div>
<!-- ws:end:WikiTextTocRule:27 --><!-- ws:start:WikiTextTocRule:28: --><div style="margin-left: 2em;"><a href="#Würschmidt-Seven limit children">Seven limit children</a></div>
<!-- ws:end:WikiTextTocRule:28 --><!-- ws:start:WikiTextTocRule:29: --><div style="margin-left: 1em;"><a href="#Würschmidt">Würschmidt</a></div>
<!-- ws:end:WikiTextTocRule:29 --><!-- ws:start:WikiTextTocRule:30: --><div style="margin-left: 2em;"><a href="#Würschmidt-11-limit">11-limit</a></div>
<!-- ws:end:WikiTextTocRule:30 --><!-- ws:start:WikiTextTocRule:31: --><div style="margin-left: 2em;"><a href="#Würschmidt-13-limit">13-limit</a></div>
<!-- ws:end:WikiTextTocRule:31 --><!-- ws:start:WikiTextTocRule:32: --><div style="margin-left: 1em;"><a href="#Worschmidt">Worschmidt</a></div>
<!-- ws:end:WikiTextTocRule:32 --><!-- ws:start:WikiTextTocRule:33: --><div style="margin-left: 2em;"><a href="#Worschmidt-11-limit">11-limit</a></div>
<!-- ws:end:WikiTextTocRule:33 --><!-- ws:start:WikiTextTocRule:34: --><div style="margin-left: 1em;"><a href="#Whirrschmidt">Whirrschmidt</a></div>
<!-- ws:end:WikiTextTocRule:34 --><!-- ws:start:WikiTextTocRule:35: --><div style="margin-left: 1em;"><a href="#Hemiwürschmidt">Hemiwürschmidt</a></div>
<!-- ws:end:WikiTextTocRule:35 --><!-- ws:start:WikiTextTocRule:36: --><div style="margin-left: 2em;"><a href="#Hemiwürschmidt-11-limit">11-limit</a></div>
<!-- ws:end:WikiTextTocRule:36 --><!-- ws:start:WikiTextTocRule:37: --><div style="margin-left: 2em;"><a href="#Hemiwürschmidt-Hemiwur">Hemiwur</a></div>
<!-- ws:end:WikiTextTocRule:37 --><!-- ws:start:WikiTextTocRule:38: --><div style="margin-left: 3em;"><a href="#Hemiwürschmidt-Hemiwur-13-limit">13-limit</a></div>
<!-- ws:end:WikiTextTocRule:38 --><!-- ws:start:WikiTextTocRule:39: --><div style="margin-left: 1em;"><a href="#Relationships to other temperaments">Relationships to other temperaments</a></div>
<!-- ws:end:WikiTextTocRule:39 --><!-- ws:start:WikiTextTocRule:40: --></div>
<!-- ws:end:WikiTextTocRule:40 --><!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Würschmidt"></a><!-- ws:end:WikiTextHeadingRule:0 -->Würschmidt</h1>
 The <a class="wiki_link" href="http://xenharmonic.wikispaces.com/5-limit">5-limit</a> parent comma for the würschmidt family is 393216/390625, known as Würschmidt's comma, and named after José Würschmidt, Its <a class="wiki_link" href="http://xenharmonic.wikispaces.com/monzo">monzo</a> is |17 1 -8&gt;, and flipping that yields &lt;&lt;8 1 17|| for the wedgie. This tells us the <a class="wiki_link" href="http://xenharmonic.wikispaces.com/generator">generator</a> is a major third, and that to get to the interval class of fifths will require eight of these. In fact, (5/4)^8 * 393216/390625 = 6. 10\31, 11\34 or 21\65 are possible generators and other tunings include 96edo, 99edo and 164edo. Another tuning solution is to sharpen the major third by 1/8th of a Würschmidt comma, which is to say by 1.43 cents, and thereby achieve pure fifths; this is the <a class="wiki_link" href="http://xenharmonic.wikispaces.com/minimax%20tuning">minimax tuning</a>. Würschmidt is well-supplied with MOS scales, with 10, 13, 16, 19, 22, 25, 28, 31 and 34 note <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOS">MOS</a> all possibilities.<br />
<br />
<a class="wiki_link" href="http://xenharmonic.wikispaces.com/POTE%20tuning">POTE generator</a>: 387.799<br />
<br />
Map: [&lt;1 7 3|, &lt;0 -8 -1|]<br />
<br />
EDOs: <a class="wiki_link" href="http://xenharmonic.wikispaces.com/31edo">31</a>, <a class="wiki_link" href="http://xenharmonic.wikispaces.com/34edo">34</a>, <a class="wiki_link" href="http://xenharmonic.wikispaces.com/65edo">65</a>, <a class="wiki_link" href="http://xenharmonic.wikispaces.com/99edo">99</a>, <a class="wiki_link" href="http://xenharmonic.wikispaces.com/164edo">164</a>, <a class="wiki_link" href="http://xenharmonic.wikispaces.com/721edo">721c</a>, <a class="wiki_link" href="http://xenharmonic.wikispaces.com/885edo">885c</a><br />
<br />
<!-- ws:start:WikiTextHeadingRule:2:&lt;h2&gt; --><h2 id="toc1"><a name="Würschmidt-Seven limit children"></a><!-- ws:end:WikiTextHeadingRule:2 -->Seven limit children</h2>
 The second comma of the <a class="wiki_link" href="http://xenharmonic.wikispaces.com/Normal%20lists">normal comma list</a> defines which 7-limit family member we are looking at. Wurschmidt adds |12 3 -6 -1&gt;, worschmidt adds 65625/65536 = |-16 1 5 1&gt;, whirrschmidt adds 4375/4374 = |-1 -7 4 1&gt; and hemiwuerschmidt adds 6144/6125 = |11 1 -3 -2&gt;.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:4:&lt;h1&gt; --><h1 id="toc2"><a name="Würschmidt"></a><!-- ws:end:WikiTextHeadingRule:4 -->Würschmidt</h1>
 Würschmidt, aside from the commas listed above, also tempers out 225/224. <a class="wiki_link" href="http://xenharmonic.wikispaces.com/31edo">31edo</a> or <a class="wiki_link" href="http://xenharmonic.wikispaces.com/127edo">127edo</a> can be used as tunings. Würschmidt has &lt;&lt;8 1 18 -17 6 39|| for a wedgie. It extends naturally to an 11-limit version &lt;&lt;8 1 18 20 ,,,|| which also tempers out 99/98, 176/175 and 243/242. <a class="wiki_link" href="http://xenharmonic.wikispaces.com/127edo">127edo</a> is again an excellent tuning for 11-limit wurschmidt, as well as for minerva, the 11-limit rank three temperament tempering out 99/98 and 176/175.<br />
<br />
Commas: 225/224, 8748/8575<br />
<br />
<a class="wiki_link" href="http://xenharmonic.wikispaces.com/POTE%20tuning">POTE generator</a>: 387.383<br />
<br />
Map: [&lt;1 7 3 15|, &lt;0 -8 -1 -18|]<br />
EDOs: <a class="wiki_link" href="http://xenharmonic.wikispaces.com/31edo">31</a>, <a class="wiki_link" href="http://xenharmonic.wikispaces.com/96edo">96</a>, <a class="wiki_link" href="http://xenharmonic.wikispaces.com/127edo">127</a>, <a class="wiki_link" href="http://xenharmonic.wikispaces.com/285edo">28bd</a>, <a class="wiki_link" href="http://xenharmonic.wikispaces.com/412edo">412bd</a><br />
Badness: 0.0508<br />
<br />
<!-- ws:start:WikiTextHeadingRule:6:&lt;h2&gt; --><h2 id="toc3"><a name="Würschmidt-11-limit"></a><!-- ws:end:WikiTextHeadingRule:6 -->11-limit</h2>
 Commas: 99/98, 176/175, 243/242<br />
<br />
POTE generator: ~5/4 = 387.447<br />
<br />
Map: [&lt;1 7 3 15 17|, &lt;0 -8 -1 -18 -20|]<br />
EDOs: 31, 65d, 96, 127, 223d<br />
Badness: 0.0244<br />
<br />
<!-- ws:start:WikiTextHeadingRule:8:&lt;h2&gt; --><h2 id="toc4"><a name="Würschmidt-13-limit"></a><!-- ws:end:WikiTextHeadingRule:8 -->13-limit</h2>
Commas: 99/98, 144/143, 176/175, 275/273<br />
<br />
POTE generator: ~5/4 = 387.626<br />
<br />
Map: [&lt;1 7 3 15 17 1|, &lt;0 -8 -1 -18 -20 4|]<br />
EDOs: 31, 65d, 161df<br />
Badness: 0.0236<br />
<br />
<!-- ws:start:WikiTextHeadingRule:10:&lt;h1&gt; --><h1 id="toc5"><a name="Worschmidt"></a><!-- ws:end:WikiTextHeadingRule:10 -->Worschmidt</h1>
 Worschmidt tempers out 126/125 rather than 225/224, and can use <a class="wiki_link" href="http://xenharmonic.wikispaces.com/31edo">31edo</a>, <a class="wiki_link" href="http://xenharmonic.wikispaces.com/34edo">34edo</a>, or <a class="wiki_link" href="http://xenharmonic.wikispaces.com/127edo">127edo</a> as a tuning. If 127 is used, note that the val is &lt;127 201 295 356| and not &lt;127 201 295 357| as with wurschmidt. The wedgie now is &lt;&lt;8 1 -13 -17 -43 -33|. In practice, of course, both mappings could be used ambiguously, which might be an interesting avenue for someone to explore.<br />
<br />
Commas: 126/125, 33075/32768<br />
<br />
<a class="wiki_link" href="http://xenharmonic.wikispaces.com/POTE%20tuning">POTE generator</a>: 387.392<br />
<br />
Map: [&lt;1 7 3 -6|, &lt;0 -8 -1 13|]<br />
EDOs: <a class="wiki_link" href="http://xenharmonic.wikispaces.com/31edo">31</a>, <a class="wiki_link" href="http://xenharmonic.wikispaces.com/65edo">65</a>, <a class="wiki_link" href="http://xenharmonic.wikispaces.com/96edo">96d</a>, <a class="wiki_link" href="http://xenharmonic.wikispaces.com/127edo">127d</a><br />
Badness: 0.0646<br />
<br />
<!-- ws:start:WikiTextHeadingRule:12:&lt;h2&gt; --><h2 id="toc6"><a name="Worschmidt-11-limit"></a><!-- ws:end:WikiTextHeadingRule:12 -->11-limit</h2>
 Commas: 126/125, 243/242, 385/384<br />
<br />
POTE generator: ~5/4 = 387.407<br />
<br />
Map: [&lt;1 7 3 -6 17|, &lt;0 -8 -1 13 -20|]<br />
EDOs: 31, 65, 96d, 127d<br />
Badness: 0.0334<br />
<br />
<!-- ws:start:WikiTextHeadingRule:14:&lt;h1&gt; --><h1 id="toc7"><a name="Whirrschmidt"></a><!-- ws:end:WikiTextHeadingRule:14 -->Whirrschmidt</h1>
 <a class="wiki_link" href="http://xenharmonic.wikispaces.com/99edo">99edo</a> is such a good tuning for whirrschimdt that we hardly need look any farther. Unfortunately, the temperament while accurate is complex, with &lt;&lt;8 1 52 -17 60 118|| for a wedgie.<br />
<br />
Commas: 4375/4374, 393216/390625<br />
<br />
<a class="wiki_link" href="http://xenharmonic.wikispaces.com/POTE%20tuning">POTE generator</a>: 387.881<br />
<br />
Map: [&lt;1 7 3 38|, &lt;0 -8 -1 -52|]<br />
<br />
EDOs: <a class="wiki_link" href="http://xenharmonic.wikispaces.com/31edo">31</a>, <a class="wiki_link" href="http://xenharmonic.wikispaces.com/34edo">34</a>, <a class="wiki_link" href="http://xenharmonic.wikispaces.com/65edo">65</a>, <a class="wiki_link" href="http://xenharmonic.wikispaces.com/99edo">99</a><br />
<br />
<!-- ws:start:WikiTextHeadingRule:16:&lt;h1&gt; --><h1 id="toc8"><a name="Hemiwürschmidt"></a><!-- ws:end:WikiTextHeadingRule:16 -->Hemiwürschmidt</h1>
 Hemiwürschmidt, which splits the major third in two and uses that for a generator, is the most important of these temperaments even with the rather large complexity for the fifth. It tempers out 3136/3125, 6144/6125 and 2401/2400. <a class="wiki_link" href="http://xenharmonic.wikispaces.com/68edo">68edo</a>, <a class="wiki_link" href="http://xenharmonic.wikispaces.com/99edo">99edo</a> and <a class="wiki_link" href="http://xenharmonic.wikispaces.com/130edo">130edo</a> can all be used as tunings, but 130 is not only the most accurate, it shows how hemiwürschmidt extends to a higher limit temperament, &lt;&lt;16 2 5 40 -39 -49 -48 28...<br />
<br />
Commas: 2401/2400, 3136/3125<br />
<br />
<a class="wiki_link" href="http://xenharmonic.wikispaces.com/POTE%20tuning">POTE generator</a>: ~28/25 = 193.898<br />
<br />
Map: [&lt;1 15 4 7|, &lt;0 -16 -2 -5|]<br />
&lt;&lt;16 2 5 -34 -37 6||<br />
EDOs: <a class="wiki_link" href="http://xenharmonic.wikispaces.com/6edo">6</a>, <a class="wiki_link" href="http://xenharmonic.wikispaces.com/31edo">31</a>, <a class="wiki_link" href="http://xenharmonic.wikispaces.com/37edo">37</a>, <a class="wiki_link" href="http://xenharmonic.wikispaces.com/68edo">68</a>, <a class="wiki_link" href="http://xenharmonic.wikispaces.com/99edo">99</a>, <a class="wiki_link" href="http://xenharmonic.wikispaces.com/229edo">229</a>, <a class="wiki_link" href="http://xenharmonic.wikispaces.com/328edo">328</a>, <a class="wiki_link" href="http://xenharmonic.wikispaces.com/557edo">557c</a>, <a class="wiki_link" href="http://xenharmonic.wikispaces.com/885edo">885c</a><br />
Badness: 0.0203<br />
<br />
<!-- ws:start:WikiTextHeadingRule:18:&lt;h2&gt; --><h2 id="toc9"><a name="Hemiwürschmidt-11-limit"></a><!-- ws:end:WikiTextHeadingRule:18 -->11-limit</h2>
 Commas: 243/242, 441/440, 3136/3125<br />
<br />
<a class="wiki_link" href="http://xenharmonic.wikispaces.com/POTE%20tuning">POTE generator</a>: ~28/25 = 193.840<br />
<br />
Map: [&lt;1 15 4 7 37|, &lt;0 -16 -2 -5 -40|]<br />
EDOs: 31, 99e, 130, 650ce, 811ce<br />
Badness: 0.0211<br />
<br />
<!-- ws:start:WikiTextHeadingRule:20:&lt;h2&gt; --><h2 id="toc10"><a name="Hemiwürschmidt-Hemiwur"></a><!-- ws:end:WikiTextHeadingRule:20 -->Hemiwur</h2>
Commas: 121/120, 176/175, 1375/1372<br />
<br />
POTE generator: ~28/25 = 193.884<br />
<br />
Map: [&lt;1 15 4 7 11|, &lt;0 -16 -2 -5 -9|]<br />
EDOs: 6, 31, 68, 99, 130e, 229e<br />
Badness: 0.0293<br />
<br />
<!-- ws:start:WikiTextHeadingRule:22:&lt;h3&gt; --><h3 id="toc11"><a name="Hemiwürschmidt-Hemiwur-13-limit"></a><!-- ws:end:WikiTextHeadingRule:22 -->13-limit</h3>
Commas: 121/120, 176/175, 196/195, 275/273<br />
<br />
POTE generator: ~28/25 = 194.004<br />
<br />
Map: [&lt;1 15 4 7 11 -3|, &lt;0 -16 -2 -5 -9 8|]<br />
EDOs: 6, 31, 68, 99f, 167ef<br />
Badness: 0.0284<br />
<br />
<!-- ws:start:WikiTextHeadingRule:24:&lt;h1&gt; --><h1 id="toc12"><a name="Relationships to other temperaments"></a><!-- ws:end:WikiTextHeadingRule:24 -->Relationships to other temperaments</h1>
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: -25px; width: 1px;">around 775.489 which is approximately</span><br />
2-Würschmidt, the temperament with all the same commas as Würschmidt but a generator of twice the size, is equivalent to <a class="wiki_link" href="http://xenharmonic.wikispaces.com/skwares">skwares</a> as a 2.3.7.11 temperament.</body></html>