Semicomma family: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>genewardsmith
**Imported revision 303360246 - Original comment: **
Wikispaces>genewardsmith
**Imported revision 303360614 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2012-02-20 11:32:48 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2012-02-20 11:34:08 UTC</tt>.<br>
: The original revision id was <tt>303360246</tt>.<br>
: The original revision id was <tt>303360614</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 14: Line 14:
EDOs: 22, 31, 53, 190, 243, 296, 645c
EDOs: 22, 31, 53, 190, 243, 296, 645c


=Seven limit children=  
==Seven limit children==
The second comma of the [[Normal lists|normal comma list]] defines which 7-limit family member we are looking at. Adding 65536/64625 leads to orwell, but we could also add 1029/1024, leading to the 31&amp;159 temperament with wedgie &lt;&lt;21 -9 -7 -63 -70 9||, or 67528125/67108864, giving the 31&amp;243 temperament with wedgie &lt;&lt;28 -12 1 -84 -77 36||, or 4375/4374, giving the 53&amp;243 temperament with wedgie &lt;&lt;7 -3 61 -21 77 150||.
The second comma of the [[Normal lists|normal comma list]] defines which 7-limit family member we are looking at. Adding 65536/64625 leads to orwell, but we could also add 1029/1024, leading to the 31&amp;159 temperament with wedgie &lt;&lt;21 -9 -7 -63 -70 9||, or 67528125/67108864, giving the 31&amp;243 temperament with wedgie &lt;&lt;28 -12 1 -84 -77 36||, or 4375/4374, giving the 53&amp;243 temperament with wedgie &lt;&lt;7 -3 61 -21 77 150||.


==Orwell==  
=Orwell=
Main article: [[Orwell]]
Main article: [[Orwell]]
So called because 19\84 (as a [[fraction of the octave]]) is a possible generator of this temperament, orwell divides the interval of a twelfth (a tempered 3/1 frequency ratio) into 7 equal steps. It's compatible with [[22edo|22]], [[31edo|31]], [[53edo|53]] and [[84edo|84]] equal, and may be described as the 22&amp;31 temperament, or &lt;&lt;7 -3 8 -21 -7 27||. It's a good system in the [[7-limit]] and naturally extends into the [[11-limit]]. [[84edo]], with the 19\84 generator, provides a good tuning for the 5, 7 and 11 limits, but it does use its second-best 11. However, the 19\84 generator is remarkably close to the 11-limit [[POTE tuning]], as the generator is only 0.0024 cents sharper, and it is a good approximation to the 7-limit POTE generator also; hence 84 may be considered the most recommendable tuning in the 7-limit. [[53edo]] might be preferred in the 5-limit because of its nearly pure fifth and in the 11-limit because of it slightly better 11, though most of its 11-limit harmony is actually worse. Aside from the semicomma and 65625/65536, 7-limit orwell tempers out 2430/2401, the nuwell comma, 1728/1715, the orwellisma, 225/224, the septimal kleisma, and 6144/6125, the porwell comma.
So called because 19\84 (as a [[fraction of the octave]]) is a possible generator of this temperament, orwell divides the interval of a twelfth (a tempered 3/1 frequency ratio) into 7 equal steps. It's compatible with [[22edo|22]], [[31edo|31]], [[53edo|53]] and [[84edo|84]] equal, and may be described as the 22&amp;31 temperament, or &lt;&lt;7 -3 8 -21 -7 27||. It's a good system in the [[7-limit]] and naturally extends into the [[11-limit]]. [[84edo]], with the 19\84 generator, provides a good tuning for the 5, 7 and 11 limits, but it does use its second-best 11. However, the 19\84 generator is remarkably close to the 11-limit [[POTE tuning]], as the generator is only 0.0024 cents sharper, and it is a good approximation to the 7-limit POTE generator also; hence 84 may be considered the most recommendable tuning in the 7-limit. [[53edo]] might be preferred in the 5-limit because of its nearly pure fifth and in the 11-limit because of it slightly better 11, though most of its 11-limit harmony is actually worse. Aside from the semicomma and 65625/65536, 7-limit orwell tempers out 2430/2401, the nuwell comma, 1728/1715, the orwellisma, 225/224, the septimal kleisma, and 6144/6125, the porwell comma.
Line 25: Line 25:
Orwell has MOS of size 9, 13, 22 and 31. The 9-note MOS is small enough to be retained in the mind as a genuine scale, is pleasing melodically, and has [[Retuning 12edo to Orwell9|considerable harmonic resources]] despite its absence of 5-limit triads. The 13 note MOS has those, and of course the 22 and 31 note MOS are very well supplied with everything.
Orwell has MOS of size 9, 13, 22 and 31. The 9-note MOS is small enough to be retained in the mind as a genuine scale, is pleasing melodically, and has [[Retuning 12edo to Orwell9|considerable harmonic resources]] despite its absence of 5-limit triads. The 13 note MOS has those, and of course the 22 and 31 note MOS are very well supplied with everything.


=Orwell=
[[Comma|Commas]]: 225/224, 1728/1715
[[Comma|Commas]]: 225/224, 1728/1715


Line 138: Line 137:
[[http://micro.soonlabel.com/orwell/daily20100721-gpo-owellian-cameras.mp3|Orwellian Cameras]] by [[Chris Vaisvil]]</pre></div>
[[http://micro.soonlabel.com/orwell/daily20100721-gpo-owellian-cameras.mp3|Orwellian Cameras]] by [[Chris Vaisvil]]</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Semicomma family&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:26:&amp;lt;img id=&amp;quot;wikitext@@toc@@normal&amp;quot; class=&amp;quot;WikiMedia WikiMediaToc&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/normal?w=225&amp;amp;h=100&amp;quot;/&amp;gt; --&gt;&lt;div id="toc"&gt;&lt;h1 class="nopad"&gt;Table of Contents&lt;/h1&gt;&lt;!-- ws:end:WikiTextTocRule:26 --&gt;&lt;!-- ws:start:WikiTextTocRule:27: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Seven limit children"&gt;Seven limit children&lt;/a&gt;&lt;/div&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Semicomma family&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:24:&amp;lt;img id=&amp;quot;wikitext@@toc@@normal&amp;quot; class=&amp;quot;WikiMedia WikiMediaToc&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/normal?w=225&amp;amp;h=100&amp;quot;/&amp;gt; --&gt;&lt;div id="toc"&gt;&lt;h1 class="nopad"&gt;Table of Contents&lt;/h1&gt;&lt;!-- ws:end:WikiTextTocRule:24 --&gt;&lt;!-- ws:start:WikiTextTocRule:25: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#x-Seven limit children"&gt;Seven limit children&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:27 --&gt;&lt;!-- ws:start:WikiTextTocRule:28: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Seven limit children-Orwell"&gt;Orwell&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:25 --&gt;&lt;!-- ws:start:WikiTextTocRule:26: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Orwell"&gt;Orwell&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:28 --&gt;&lt;!-- ws:start:WikiTextTocRule:29: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Orwell"&gt;Orwell&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:26 --&gt;&lt;!-- ws:start:WikiTextTocRule:27: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Orwell-11-limit"&gt;11-limit&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:29 --&gt;&lt;!-- ws:start:WikiTextTocRule:30: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Orwell-11-limit"&gt;11-limit&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:27 --&gt;&lt;!-- ws:start:WikiTextTocRule:28: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Orwell-13-limit"&gt;13-limit&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:30 --&gt;&lt;!-- ws:start:WikiTextTocRule:31: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Orwell-13-limit"&gt;13-limit&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:28 --&gt;&lt;!-- ws:start:WikiTextTocRule:29: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Orwell-Blair"&gt;Blair&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:31 --&gt;&lt;!-- ws:start:WikiTextTocRule:32: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Orwell-Blair"&gt;Blair&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:29 --&gt;&lt;!-- ws:start:WikiTextTocRule:30: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Orwell-Newspeak"&gt;Newspeak&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:32 --&gt;&lt;!-- ws:start:WikiTextTocRule:33: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Orwell-Newspeak"&gt;Newspeak&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:30 --&gt;&lt;!-- ws:start:WikiTextTocRule:31: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Orwell-Winston"&gt;Winston&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:33 --&gt;&lt;!-- ws:start:WikiTextTocRule:34: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Orwell-Winston"&gt;Winston&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:31 --&gt;&lt;!-- ws:start:WikiTextTocRule:32: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Doublethink"&gt;Doublethink&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:34 --&gt;&lt;!-- ws:start:WikiTextTocRule:35: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Doublethink"&gt;Doublethink&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:32 --&gt;&lt;!-- ws:start:WikiTextTocRule:33: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Borwell"&gt;Borwell&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:35 --&gt;&lt;!-- ws:start:WikiTextTocRule:36: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Borwell"&gt;Borwell&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:33 --&gt;&lt;!-- ws:start:WikiTextTocRule:34: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Triwell"&gt;Triwell&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:36 --&gt;&lt;!-- ws:start:WikiTextTocRule:37: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Triwell"&gt;Triwell&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:34 --&gt;&lt;!-- ws:start:WikiTextTocRule:35: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Triwell-11-limit"&gt;11-limit&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:37 --&gt;&lt;!-- ws:start:WikiTextTocRule:38: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Triwell-11-limit"&gt;11-limit&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:35 --&gt;&lt;!-- ws:start:WikiTextTocRule:36: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Music"&gt;Music&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:38 --&gt;&lt;!-- ws:start:WikiTextTocRule:39: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Music"&gt;Music&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:36 --&gt;&lt;!-- ws:start:WikiTextTocRule:37: --&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:39 --&gt;&lt;!-- ws:start:WikiTextTocRule:40: --&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:37 --&gt;The 5-limit parent comma for the &lt;strong&gt;semicomma family&lt;/strong&gt; is the semicomma, 2109375/2097152 = |-21 3 7&amp;gt;. This is the amount by which three pure 3/1 twelfths exceed seven pure 8/5 minor thirds. &lt;strong&gt;Orson&lt;/strong&gt;, the &lt;a class="wiki_link" href="/5-limit"&gt;5-limit&lt;/a&gt; temperament tempering it out, has a &lt;a class="wiki_link" href="/generator"&gt;generator&lt;/a&gt; of 75/64, which is sharper than 7/6 by 225/224 when untempered, and less sharp than that in any good orson tempering, for example &lt;a class="wiki_link" href="/53edo"&gt;53edo&lt;/a&gt; or &lt;a class="wiki_link" href="/84edo"&gt;84edo&lt;/a&gt;. These give tunings to the generator which are sharp of 7/6 by less than five &lt;a class="wiki_link" href="/cent"&gt;cent&lt;/a&gt;s, making it hard to treat orson as anything other than an (at least) 7-limit system, leading to orwell.&lt;br /&gt;
&lt;!-- ws:end:WikiTextTocRule:40 --&gt;The 5-limit parent comma for the &lt;strong&gt;semicomma family&lt;/strong&gt; is the semicomma, 2109375/2097152 = |-21 3 7&amp;gt;. This is the amount by which three pure 3/1 twelfths exceed seven pure 8/5 minor thirds. &lt;strong&gt;Orson&lt;/strong&gt;, the &lt;a class="wiki_link" href="/5-limit"&gt;5-limit&lt;/a&gt; temperament tempering it out, has a &lt;a class="wiki_link" href="/generator"&gt;generator&lt;/a&gt; of 75/64, which is sharper than 7/6 by 225/224 when untempered, and less sharp than that in any good orson tempering, for example &lt;a class="wiki_link" href="/53edo"&gt;53edo&lt;/a&gt; or &lt;a class="wiki_link" href="/84edo"&gt;84edo&lt;/a&gt;. These give tunings to the generator which are sharp of 7/6 by less than five &lt;a class="wiki_link" href="/cent"&gt;cent&lt;/a&gt;s, making it hard to treat orson as anything other than an (at least) 7-limit system, leading to orwell.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link" href="/POTE%20tuning"&gt;POTE generator&lt;/a&gt;: 271.627&lt;br /&gt;
&lt;a class="wiki_link" href="/POTE%20tuning"&gt;POTE generator&lt;/a&gt;: 271.627&lt;br /&gt;
Line 159: Line 157:
EDOs: 22, 31, 53, 190, 243, 296, 645c&lt;br /&gt;
EDOs: 22, 31, 53, 190, 243, 296, 645c&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Seven limit children"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Seven limit children&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc0"&gt;&lt;a name="x-Seven limit children"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Seven limit children&lt;/h2&gt;
The second comma of the &lt;a class="wiki_link" href="/Normal%20lists"&gt;normal comma list&lt;/a&gt; defines which 7-limit family member we are looking at. Adding 65536/64625 leads to orwell, but we could also add 1029/1024, leading to the 31&amp;amp;159 temperament with wedgie &amp;lt;&amp;lt;21 -9 -7 -63 -70 9||, or 67528125/67108864, giving the 31&amp;amp;243 temperament with wedgie &amp;lt;&amp;lt;28 -12 1 -84 -77 36||, or 4375/4374, giving the 53&amp;amp;243 temperament with wedgie &amp;lt;&amp;lt;7 -3 61 -21 77 150||.&lt;br /&gt;
The second comma of the &lt;a class="wiki_link" href="/Normal%20lists"&gt;normal comma list&lt;/a&gt; defines which 7-limit family member we are looking at. Adding 65536/64625 leads to orwell, but we could also add 1029/1024, leading to the 31&amp;amp;159 temperament with wedgie &amp;lt;&amp;lt;21 -9 -7 -63 -70 9||, or 67528125/67108864, giving the 31&amp;amp;243 temperament with wedgie &amp;lt;&amp;lt;28 -12 1 -84 -77 36||, or 4375/4374, giving the 53&amp;amp;243 temperament with wedgie &amp;lt;&amp;lt;7 -3 61 -21 77 150||.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc1"&gt;&lt;a name="Seven limit children-Orwell"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Orwell&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="Orwell"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Orwell&lt;/h1&gt;
Main article: &lt;a class="wiki_link" href="/Orwell"&gt;Orwell&lt;/a&gt;&lt;br /&gt;
Main article: &lt;a class="wiki_link" href="/Orwell"&gt;Orwell&lt;/a&gt;&lt;br /&gt;
So called because 19\84 (as a &lt;a class="wiki_link" href="/fraction%20of%20the%20octave"&gt;fraction of the octave&lt;/a&gt;) is a possible generator of this temperament, orwell divides the interval of a twelfth (a tempered 3/1 frequency ratio) into 7 equal steps. It's compatible with &lt;a class="wiki_link" href="/22edo"&gt;22&lt;/a&gt;, &lt;a class="wiki_link" href="/31edo"&gt;31&lt;/a&gt;, &lt;a class="wiki_link" href="/53edo"&gt;53&lt;/a&gt; and &lt;a class="wiki_link" href="/84edo"&gt;84&lt;/a&gt; equal, and may be described as the 22&amp;amp;31 temperament, or &amp;lt;&amp;lt;7 -3 8 -21 -7 27||. It's a good system in the &lt;a class="wiki_link" href="/7-limit"&gt;7-limit&lt;/a&gt; and naturally extends into the &lt;a class="wiki_link" href="/11-limit"&gt;11-limit&lt;/a&gt;. &lt;a class="wiki_link" href="/84edo"&gt;84edo&lt;/a&gt;, with the 19\84 generator, provides a good tuning for the 5, 7 and 11 limits, but it does use its second-best 11. However, the 19\84 generator is remarkably close to the 11-limit &lt;a class="wiki_link" href="/POTE%20tuning"&gt;POTE tuning&lt;/a&gt;, as the generator is only 0.0024 cents sharper, and it is a good approximation to the 7-limit POTE generator also; hence 84 may be considered the most recommendable tuning in the 7-limit. &lt;a class="wiki_link" href="/53edo"&gt;53edo&lt;/a&gt; might be preferred in the 5-limit because of its nearly pure fifth and in the 11-limit because of it slightly better 11, though most of its 11-limit harmony is actually worse. Aside from the semicomma and 65625/65536, 7-limit orwell tempers out 2430/2401, the nuwell comma, 1728/1715, the orwellisma, 225/224, the septimal kleisma, and 6144/6125, the porwell comma.&lt;br /&gt;
So called because 19\84 (as a &lt;a class="wiki_link" href="/fraction%20of%20the%20octave"&gt;fraction of the octave&lt;/a&gt;) is a possible generator of this temperament, orwell divides the interval of a twelfth (a tempered 3/1 frequency ratio) into 7 equal steps. It's compatible with &lt;a class="wiki_link" href="/22edo"&gt;22&lt;/a&gt;, &lt;a class="wiki_link" href="/31edo"&gt;31&lt;/a&gt;, &lt;a class="wiki_link" href="/53edo"&gt;53&lt;/a&gt; and &lt;a class="wiki_link" href="/84edo"&gt;84&lt;/a&gt; equal, and may be described as the 22&amp;amp;31 temperament, or &amp;lt;&amp;lt;7 -3 8 -21 -7 27||. It's a good system in the &lt;a class="wiki_link" href="/7-limit"&gt;7-limit&lt;/a&gt; and naturally extends into the &lt;a class="wiki_link" href="/11-limit"&gt;11-limit&lt;/a&gt;. &lt;a class="wiki_link" href="/84edo"&gt;84edo&lt;/a&gt;, with the 19\84 generator, provides a good tuning for the 5, 7 and 11 limits, but it does use its second-best 11. However, the 19\84 generator is remarkably close to the 11-limit &lt;a class="wiki_link" href="/POTE%20tuning"&gt;POTE tuning&lt;/a&gt;, as the generator is only 0.0024 cents sharper, and it is a good approximation to the 7-limit POTE generator also; hence 84 may be considered the most recommendable tuning in the 7-limit. &lt;a class="wiki_link" href="/53edo"&gt;53edo&lt;/a&gt; might be preferred in the 5-limit because of its nearly pure fifth and in the 11-limit because of it slightly better 11, though most of its 11-limit harmony is actually worse. Aside from the semicomma and 65625/65536, 7-limit orwell tempers out 2430/2401, the nuwell comma, 1728/1715, the orwellisma, 225/224, the septimal kleisma, and 6144/6125, the porwell comma.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Line 170: Line 168:
Orwell has MOS of size 9, 13, 22 and 31. The 9-note MOS is small enough to be retained in the mind as a genuine scale, is pleasing melodically, and has &lt;a class="wiki_link" href="/Retuning%2012edo%20to%20Orwell9"&gt;considerable harmonic resources&lt;/a&gt; despite its absence of 5-limit triads. The 13 note MOS has those, and of course the 22 and 31 note MOS are very well supplied with everything.&lt;br /&gt;
Orwell has MOS of size 9, 13, 22 and 31. The 9-note MOS is small enough to be retained in the mind as a genuine scale, is pleasing melodically, and has &lt;a class="wiki_link" href="/Retuning%2012edo%20to%20Orwell9"&gt;considerable harmonic resources&lt;/a&gt; despite its absence of 5-limit triads. The 13 note MOS has those, and of course the 22 and 31 note MOS are very well supplied with everything.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc2"&gt;&lt;a name="Orwell"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;Orwell&lt;/h1&gt;
&lt;a class="wiki_link" href="/Comma"&gt;Commas&lt;/a&gt;: 225/224, 1728/1715&lt;br /&gt;
&lt;a class="wiki_link" href="/Comma"&gt;Commas&lt;/a&gt;: 225/224, 1728/1715&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Line 191: Line 188:
Badness: 0.0207&lt;br /&gt;
Badness: 0.0207&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc3"&gt;&lt;a name="Orwell-11-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;11-limit&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc2"&gt;&lt;a name="Orwell-11-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;11-limit&lt;/h2&gt;
&lt;a class="wiki_link" href="/Comma"&gt;Commas&lt;/a&gt;: 99/98, 121/120, 176/175&lt;br /&gt;
&lt;a class="wiki_link" href="/Comma"&gt;Commas&lt;/a&gt;: 99/98, 121/120, 176/175&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Line 205: Line 202:
Badness: 0.0152&lt;br /&gt;
Badness: 0.0152&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc4"&gt;&lt;a name="Orwell-13-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;13-limit&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc3"&gt;&lt;a name="Orwell-13-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;13-limit&lt;/h2&gt;
Commas: 99/98, 121/120, 176/175, 275/273&lt;br /&gt;
Commas: 99/98, 121/120, 176/175, 275/273&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Line 214: Line 211:
Badness: 0.0197&lt;br /&gt;
Badness: 0.0197&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:10:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc5"&gt;&lt;a name="Orwell-Blair"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:10 --&gt;Blair&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc4"&gt;&lt;a name="Orwell-Blair"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;Blair&lt;/h2&gt;
Commas: 65/64, 78/77, 91/90, 99/98&lt;br /&gt;
Commas: 65/64, 78/77, 91/90, 99/98&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Line 223: Line 220:
Badness: 0.0231&lt;br /&gt;
Badness: 0.0231&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:12:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc6"&gt;&lt;a name="Orwell-Newspeak"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:12 --&gt;Newspeak&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:10:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc5"&gt;&lt;a name="Orwell-Newspeak"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:10 --&gt;Newspeak&lt;/h2&gt;
Commas: 225/224, 441/440, 1728/1715&lt;br /&gt;
Commas: 225/224, 441/440, 1728/1715&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Line 232: Line 229:
Badness: 0.0314&lt;br /&gt;
Badness: 0.0314&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:14:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc7"&gt;&lt;a name="Orwell-Winston"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:14 --&gt;Winston&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:12:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc6"&gt;&lt;a name="Orwell-Winston"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:12 --&gt;Winston&lt;/h2&gt;
Commas: 66/65, 99/98, 105/104, 121/120&lt;br /&gt;
Commas: 66/65, 99/98, 105/104, 121/120&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Line 241: Line 238:
Badness: 0.0199&lt;br /&gt;
Badness: 0.0199&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:16:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc8"&gt;&lt;a name="Doublethink"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:16 --&gt;Doublethink&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:14:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc7"&gt;&lt;a name="Doublethink"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:14 --&gt;Doublethink&lt;/h1&gt;
Commas: 99/98, 121/120, 169/168, 176/175&lt;br /&gt;
Commas: 99/98, 121/120, 169/168, 176/175&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Line 250: Line 247:
Badness: 0.0271&lt;br /&gt;
Badness: 0.0271&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:18:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc9"&gt;&lt;a name="Borwell"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:18 --&gt;Borwell&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:16:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc8"&gt;&lt;a name="Borwell"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:16 --&gt;Borwell&lt;/h1&gt;
  Commas: 225/224, 243/242, 1728/1715&lt;br /&gt;
  Commas: 225/224, 243/242, 1728/1715&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Line 259: Line 256:
Badness: 0.0384&lt;br /&gt;
Badness: 0.0384&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:20:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc10"&gt;&lt;a name="Triwell"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:20 --&gt;Triwell&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:18:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc9"&gt;&lt;a name="Triwell"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:18 --&gt;Triwell&lt;/h1&gt;
Commas: 1029/1024, 235298/234375&lt;br /&gt;
Commas: 1029/1024, 235298/234375&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Line 269: Line 266:
Badness: 0.0806&lt;br /&gt;
Badness: 0.0806&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:22:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc11"&gt;&lt;a name="Triwell-11-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:22 --&gt;11-limit&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:20:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc10"&gt;&lt;a name="Triwell-11-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:20 --&gt;11-limit&lt;/h2&gt;
Commas: 385/384, 441/440, 456533/455625&lt;br /&gt;
Commas: 385/384, 441/440, 456533/455625&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Line 278: Line 275:
Badness: 0.0298&lt;br /&gt;
Badness: 0.0298&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:24:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc12"&gt;&lt;a name="Music"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:24 --&gt;Music&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:22:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc11"&gt;&lt;a name="Music"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:22 --&gt;Music&lt;/h1&gt;
  &lt;a class="wiki_link_ext" href="http://www.archive.org/details/TrioInOrwell" rel="nofollow"&gt;Trio in Orwell&lt;/a&gt; &lt;a class="wiki_link_ext" href="http://www.archive.org/download/TrioInOrwell/TrioInOrwell.mp3" rel="nofollow"&gt;play&lt;/a&gt; by &lt;a class="wiki_link" href="/Gene%20Ward%20Smith"&gt;Gene Ward Smith&lt;/a&gt;&lt;br /&gt;
  &lt;a class="wiki_link_ext" href="http://www.archive.org/details/TrioInOrwell" rel="nofollow"&gt;Trio in Orwell&lt;/a&gt; &lt;a class="wiki_link_ext" href="http://www.archive.org/download/TrioInOrwell/TrioInOrwell.mp3" rel="nofollow"&gt;play&lt;/a&gt; by &lt;a class="wiki_link" href="/Gene%20Ward%20Smith"&gt;Gene Ward Smith&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://soundclick.com/share?songid=9101705" rel="nofollow"&gt;one drop of rain&lt;/a&gt;, &lt;a class="wiki_link_ext" href="http://soundclick.com/share?songid=9101704" rel="nofollow"&gt;i've come with a bucket of roses&lt;/a&gt;, and &lt;a class="wiki_link_ext" href="http://soundclick.com/share?songid=8839071" rel="nofollow"&gt;my own house&lt;/a&gt; by &lt;a class="wiki_link" href="/Andrew%20Heathwaite"&gt;Andrew Heathwaite&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://soundclick.com/share?songid=9101705" rel="nofollow"&gt;one drop of rain&lt;/a&gt;, &lt;a class="wiki_link_ext" href="http://soundclick.com/share?songid=9101704" rel="nofollow"&gt;i've come with a bucket of roses&lt;/a&gt;, and &lt;a class="wiki_link_ext" href="http://soundclick.com/share?songid=8839071" rel="nofollow"&gt;my own house&lt;/a&gt; by &lt;a class="wiki_link" href="/Andrew%20Heathwaite"&gt;Andrew Heathwaite&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://micro.soonlabel.com/orwell/daily20100721-gpo-owellian-cameras.mp3" rel="nofollow"&gt;Orwellian Cameras&lt;/a&gt; by &lt;a class="wiki_link" href="/Chris%20Vaisvil"&gt;Chris Vaisvil&lt;/a&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>
&lt;a class="wiki_link_ext" href="http://micro.soonlabel.com/orwell/daily20100721-gpo-owellian-cameras.mp3" rel="nofollow"&gt;Orwellian Cameras&lt;/a&gt; by &lt;a class="wiki_link" href="/Chris%20Vaisvil"&gt;Chris Vaisvil&lt;/a&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>

Revision as of 11:34, 20 February 2012

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author genewardsmith and made on 2012-02-20 11:34:08 UTC.
The original revision id was 303360614.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

[[toc]]
The 5-limit parent comma for the **semicomma family** is the semicomma, 2109375/2097152 = |-21 3 7>. This is the amount by which three pure 3/1 twelfths exceed seven pure 8/5 minor thirds. **Orson**, the [[5-limit]] temperament tempering it out, has a [[generator]] of 75/64, which is sharper than 7/6 by 225/224 when untempered, and less sharp than that in any good orson tempering, for example [[53edo]] or [[84edo]]. These give tunings to the generator which are sharp of 7/6 by less than five [[cent]]s, making it hard to treat orson as anything other than an (at least) 7-limit system, leading to orwell.

[[POTE tuning|POTE generator]]: 271.627

Map: [<1 0 3|, <0 7 -3|]
EDOs: 22, 31, 53, 190, 243, 296, 645c

==Seven limit children==
The second comma of the [[Normal lists|normal comma list]] defines which 7-limit family member we are looking at. Adding 65536/64625 leads to orwell, but we could also add 1029/1024, leading to the 31&159 temperament with wedgie <<21 -9 -7 -63 -70 9||, or 67528125/67108864, giving the 31&243 temperament with wedgie <<28 -12 1 -84 -77 36||, or 4375/4374, giving the 53&243 temperament with wedgie <<7 -3 61 -21 77 150||.

=Orwell=
Main article: [[Orwell]]
So called because 19\84 (as a [[fraction of the octave]]) is a possible generator of this temperament, orwell divides the interval of a twelfth (a tempered 3/1 frequency ratio) into 7 equal steps. It's compatible with [[22edo|22]], [[31edo|31]], [[53edo|53]] and [[84edo|84]] equal, and may be described as the 22&31 temperament, or <<7 -3 8 -21 -7 27||. It's a good system in the [[7-limit]] and naturally extends into the [[11-limit]]. [[84edo]], with the 19\84 generator, provides a good tuning for the 5, 7 and 11 limits, but it does use its second-best 11. However, the 19\84 generator is remarkably close to the 11-limit [[POTE tuning]], as the generator is only 0.0024 cents sharper, and it is a good approximation to the 7-limit POTE generator also; hence 84 may be considered the most recommendable tuning in the 7-limit. [[53edo]] might be preferred in the 5-limit because of its nearly pure fifth and in the 11-limit because of it slightly better 11, though most of its 11-limit harmony is actually worse. Aside from the semicomma and 65625/65536, 7-limit orwell tempers out 2430/2401, the nuwell comma, 1728/1715, the orwellisma, 225/224, the septimal kleisma, and 6144/6125, the porwell comma.

The 11-limit version of orwell tempers out 99/98, which means that two of its sharpened 7/6 generators give a flattened 11/8, as well as 121/120, 176/175, 385/384 and 540/539. Despite lowered tuning accuracy, orwell comes into its own in the 11-limit, giving acceptable accuracy and relatively low complexity. Tempering out the orwellisma, 1728/1715, means that orwell interprets three stacked 7/6 generators as an 8/5, and the tempered 1-7/6-11/8-8/5 chord is natural to orwell.

Orwell has MOS of size 9, 13, 22 and 31. The 9-note MOS is small enough to be retained in the mind as a genuine scale, is pleasing melodically, and has [[Retuning 12edo to Orwell9|considerable harmonic resources]] despite its absence of 5-limit triads. The 13 note MOS has those, and of course the 22 and 31 note MOS are very well supplied with everything.

[[Comma|Commas]]: 225/224, 1728/1715

7-limit
[|1 0 0 0>, |14/11 0 -7/11 7/11>,
|27/11 0 3/11 -3/11>, |27/11 0 -8/11 8/11>]
[[Fractional monzos|Eigenmonzos]]: 2, 7/5

9-limit
[|1 0 0 0>, |21/17 14/17 -7/17 0>,
|42/17 -6/17 3/17 0>, |41/17 16/17 -8/17 0>]
[[Eigenmonzo|Eigenmonzos]]: 2, 10/9

[[POTE tuning|POTE generator]]: ~7/6 = 271.509
Algebraic generators: Sabra3, the real root of 12x^3-7x-48.

Map: [<1 0 3 1|, <0 7 -3 8|]
Wedgie: <<7 -3 8 -21 -7 27||
EDOs: 22, 31, 53, 84, 137, 221d, 358d
Badness: 0.0207

==11-limit==
[[Comma|Commas]]: 99/98, 121/120, 176/175

[[Minimax tuning]]
[|1 0 0 0 0>, |14/11 0 -7/11 7/11 0>, |27/11 0 3/11 -3/11 0>,
|27/11 0 -8/11 8/11 0>, |37/11 0 -2/11 2/11 0>]
[[Eigenmonzo|Eigenmonzos]]: 2, 7/5

[[POTE tuning|POTE generator]]: ~7/6 = 271.426

Map: [<1 0 3 1 3|, <0 7 -3 8 2|]
[[edo|Edos]]: [[22edo|22]], [[31edo|31]], [[53edo|53]], [[84edo|84e]]
Badness: 0.0152

==13-limit==
Commas: 99/98, 121/120, 176/175, 275/273

[[POTE tuning|POTE generator]]: ~7/6 = 271.546

Map: [<1 0 3 1 3 8|, <0 7 -3 8 2 -19|]
EDOs: 22, 31, 53, 84e, 137e
Badness: 0.0197

==Blair==
Commas: 65/64, 78/77, 91/90, 99/98

POTE generator: ~7/6 = 271.301

Map: [<1 0 3 1 3 3|, <0 7 -3 8 2 3|]
EDOs: 9, 22, 31f
Badness: 0.0231

==Newspeak==
Commas: 225/224, 441/440, 1728/1715

POTE tuning: ~7/6 = 271.288

Map: [<1 0 3 1 -4|, <0 7 -3 8 33|]
EDOs: 31, 84, 115, 376b, 491bd, 606bde
Badness: 0.0314

==Winston==
Commas: 66/65, 99/98, 105/104, 121/120

[[POTE tuning|POTE generator]]: ~7/6 = 271.088

Map: [<1 0 3 1 3 1|, <0 7 -3 8 2 12|]
EDOs: 22f, 31
Badness: 0.0199

=Doublethink=
Commas: 99/98, 121/120, 169/168, 176/175

POTE tuning: ~13/12 = 135.723

Map: [<1 0 3 1 3 2|, <0 14 -6 16 4 15|]
EDOs: 9, 44, 53, 115ef, 168ef
Badness: 0.0271

=Borwell= 
Commas: 225/224, 243/242, 1728/1715

POTE generator: ~55/36 = 735.752

Map: [<1 7 0 9 17|, <0 -14 6 -16 -35|]
EDOs: 31, 106, 137, 442bd
Badness: 0.0384

=Triwell=
Commas: 1029/1024, 235298/234375

POTE generator: ~448/375 = 309.472

Map: [<1 7 0 1|, <0 -21 9 7]]
Wedgie: <<21 -9 -7 -63 -70 9||
EDOs: 31, 97, 128, 159, 190
Badness: 0.0806

==11-limit==
Commas: 385/384, 441/440, 456533/455625

POTE generator: ~448/375 = 309.471

Map: [<1 7 0 1 13|, <0 -21 9 7 -37]]
EDOs: 31, 97, 128, 159, 190
Badness: 0.0298

=Music= 
[[http://www.archive.org/details/TrioInOrwell|Trio in Orwell]] [[http://www.archive.org/download/TrioInOrwell/TrioInOrwell.mp3|play]] by [[Gene Ward Smith]]
[[http://soundclick.com/share?songid=9101705|one drop of rain]], [[http://soundclick.com/share?songid=9101704|i've come with a bucket of roses]], and [[http://soundclick.com/share?songid=8839071|my own house]] by [[Andrew Heathwaite]]
[[http://micro.soonlabel.com/orwell/daily20100721-gpo-owellian-cameras.mp3|Orwellian Cameras]] by [[Chris Vaisvil]]

Original HTML content:

<html><head><title>Semicomma family</title></head><body><!-- ws:start:WikiTextTocRule:24:&lt;img id=&quot;wikitext@@toc@@normal&quot; class=&quot;WikiMedia WikiMediaToc&quot; title=&quot;Table of Contents&quot; src=&quot;/site/embedthumbnail/toc/normal?w=225&amp;h=100&quot;/&gt; --><div id="toc"><h1 class="nopad">Table of Contents</h1><!-- ws:end:WikiTextTocRule:24 --><!-- ws:start:WikiTextTocRule:25: --><div style="margin-left: 2em;"><a href="#x-Seven limit children">Seven limit children</a></div>
<!-- ws:end:WikiTextTocRule:25 --><!-- ws:start:WikiTextTocRule:26: --><div style="margin-left: 1em;"><a href="#Orwell">Orwell</a></div>
<!-- ws:end:WikiTextTocRule:26 --><!-- ws:start:WikiTextTocRule:27: --><div style="margin-left: 2em;"><a href="#Orwell-11-limit">11-limit</a></div>
<!-- ws:end:WikiTextTocRule:27 --><!-- ws:start:WikiTextTocRule:28: --><div style="margin-left: 2em;"><a href="#Orwell-13-limit">13-limit</a></div>
<!-- ws:end:WikiTextTocRule:28 --><!-- ws:start:WikiTextTocRule:29: --><div style="margin-left: 2em;"><a href="#Orwell-Blair">Blair</a></div>
<!-- ws:end:WikiTextTocRule:29 --><!-- ws:start:WikiTextTocRule:30: --><div style="margin-left: 2em;"><a href="#Orwell-Newspeak">Newspeak</a></div>
<!-- ws:end:WikiTextTocRule:30 --><!-- ws:start:WikiTextTocRule:31: --><div style="margin-left: 2em;"><a href="#Orwell-Winston">Winston</a></div>
<!-- ws:end:WikiTextTocRule:31 --><!-- ws:start:WikiTextTocRule:32: --><div style="margin-left: 1em;"><a href="#Doublethink">Doublethink</a></div>
<!-- ws:end:WikiTextTocRule:32 --><!-- ws:start:WikiTextTocRule:33: --><div style="margin-left: 1em;"><a href="#Borwell">Borwell</a></div>
<!-- ws:end:WikiTextTocRule:33 --><!-- ws:start:WikiTextTocRule:34: --><div style="margin-left: 1em;"><a href="#Triwell">Triwell</a></div>
<!-- ws:end:WikiTextTocRule:34 --><!-- ws:start:WikiTextTocRule:35: --><div style="margin-left: 2em;"><a href="#Triwell-11-limit">11-limit</a></div>
<!-- ws:end:WikiTextTocRule:35 --><!-- ws:start:WikiTextTocRule:36: --><div style="margin-left: 1em;"><a href="#Music">Music</a></div>
<!-- ws:end:WikiTextTocRule:36 --><!-- ws:start:WikiTextTocRule:37: --></div>
<!-- ws:end:WikiTextTocRule:37 -->The 5-limit parent comma for the <strong>semicomma family</strong> is the semicomma, 2109375/2097152 = |-21 3 7&gt;. This is the amount by which three pure 3/1 twelfths exceed seven pure 8/5 minor thirds. <strong>Orson</strong>, the <a class="wiki_link" href="/5-limit">5-limit</a> temperament tempering it out, has a <a class="wiki_link" href="/generator">generator</a> of 75/64, which is sharper than 7/6 by 225/224 when untempered, and less sharp than that in any good orson tempering, for example <a class="wiki_link" href="/53edo">53edo</a> or <a class="wiki_link" href="/84edo">84edo</a>. These give tunings to the generator which are sharp of 7/6 by less than five <a class="wiki_link" href="/cent">cent</a>s, making it hard to treat orson as anything other than an (at least) 7-limit system, leading to orwell.<br />
<br />
<a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: 271.627<br />
<br />
Map: [&lt;1 0 3|, &lt;0 7 -3|]<br />
EDOs: 22, 31, 53, 190, 243, 296, 645c<br />
<br />
<!-- ws:start:WikiTextHeadingRule:0:&lt;h2&gt; --><h2 id="toc0"><a name="x-Seven limit children"></a><!-- ws:end:WikiTextHeadingRule:0 -->Seven limit children</h2>
The second comma of the <a class="wiki_link" href="/Normal%20lists">normal comma list</a> defines which 7-limit family member we are looking at. Adding 65536/64625 leads to orwell, but we could also add 1029/1024, leading to the 31&amp;159 temperament with wedgie &lt;&lt;21 -9 -7 -63 -70 9||, or 67528125/67108864, giving the 31&amp;243 temperament with wedgie &lt;&lt;28 -12 1 -84 -77 36||, or 4375/4374, giving the 53&amp;243 temperament with wedgie &lt;&lt;7 -3 61 -21 77 150||.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:2:&lt;h1&gt; --><h1 id="toc1"><a name="Orwell"></a><!-- ws:end:WikiTextHeadingRule:2 -->Orwell</h1>
Main article: <a class="wiki_link" href="/Orwell">Orwell</a><br />
So called because 19\84 (as a <a class="wiki_link" href="/fraction%20of%20the%20octave">fraction of the octave</a>) is a possible generator of this temperament, orwell divides the interval of a twelfth (a tempered 3/1 frequency ratio) into 7 equal steps. It's compatible with <a class="wiki_link" href="/22edo">22</a>, <a class="wiki_link" href="/31edo">31</a>, <a class="wiki_link" href="/53edo">53</a> and <a class="wiki_link" href="/84edo">84</a> equal, and may be described as the 22&amp;31 temperament, or &lt;&lt;7 -3 8 -21 -7 27||. It's a good system in the <a class="wiki_link" href="/7-limit">7-limit</a> and naturally extends into the <a class="wiki_link" href="/11-limit">11-limit</a>. <a class="wiki_link" href="/84edo">84edo</a>, with the 19\84 generator, provides a good tuning for the 5, 7 and 11 limits, but it does use its second-best 11. However, the 19\84 generator is remarkably close to the 11-limit <a class="wiki_link" href="/POTE%20tuning">POTE tuning</a>, as the generator is only 0.0024 cents sharper, and it is a good approximation to the 7-limit POTE generator also; hence 84 may be considered the most recommendable tuning in the 7-limit. <a class="wiki_link" href="/53edo">53edo</a> might be preferred in the 5-limit because of its nearly pure fifth and in the 11-limit because of it slightly better 11, though most of its 11-limit harmony is actually worse. Aside from the semicomma and 65625/65536, 7-limit orwell tempers out 2430/2401, the nuwell comma, 1728/1715, the orwellisma, 225/224, the septimal kleisma, and 6144/6125, the porwell comma.<br />
<br />
The 11-limit version of orwell tempers out 99/98, which means that two of its sharpened 7/6 generators give a flattened 11/8, as well as 121/120, 176/175, 385/384 and 540/539. Despite lowered tuning accuracy, orwell comes into its own in the 11-limit, giving acceptable accuracy and relatively low complexity. Tempering out the orwellisma, 1728/1715, means that orwell interprets three stacked 7/6 generators as an 8/5, and the tempered 1-7/6-11/8-8/5 chord is natural to orwell.<br />
<br />
Orwell has MOS of size 9, 13, 22 and 31. The 9-note MOS is small enough to be retained in the mind as a genuine scale, is pleasing melodically, and has <a class="wiki_link" href="/Retuning%2012edo%20to%20Orwell9">considerable harmonic resources</a> despite its absence of 5-limit triads. The 13 note MOS has those, and of course the 22 and 31 note MOS are very well supplied with everything.<br />
<br />
<a class="wiki_link" href="/Comma">Commas</a>: 225/224, 1728/1715<br />
<br />
7-limit<br />
[|1 0 0 0&gt;, |14/11 0 -7/11 7/11&gt;,<br />
|27/11 0 3/11 -3/11&gt;, |27/11 0 -8/11 8/11&gt;]<br />
<a class="wiki_link" href="/Fractional%20monzos">Eigenmonzos</a>: 2, 7/5<br />
<br />
9-limit<br />
[|1 0 0 0&gt;, |21/17 14/17 -7/17 0&gt;,<br />
|42/17 -6/17 3/17 0&gt;, |41/17 16/17 -8/17 0&gt;]<br />
<a class="wiki_link" href="/Eigenmonzo">Eigenmonzos</a>: 2, 10/9<br />
<br />
<a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: ~7/6 = 271.509<br />
Algebraic generators: Sabra3, the real root of 12x^3-7x-48.<br />
<br />
Map: [&lt;1 0 3 1|, &lt;0 7 -3 8|]<br />
Wedgie: &lt;&lt;7 -3 8 -21 -7 27||<br />
EDOs: 22, 31, 53, 84, 137, 221d, 358d<br />
Badness: 0.0207<br />
<br />
<!-- ws:start:WikiTextHeadingRule:4:&lt;h2&gt; --><h2 id="toc2"><a name="Orwell-11-limit"></a><!-- ws:end:WikiTextHeadingRule:4 -->11-limit</h2>
<a class="wiki_link" href="/Comma">Commas</a>: 99/98, 121/120, 176/175<br />
<br />
<a class="wiki_link" href="/Minimax%20tuning">Minimax tuning</a><br />
[|1 0 0 0 0&gt;, |14/11 0 -7/11 7/11 0&gt;, |27/11 0 3/11 -3/11 0&gt;,<br />
|27/11 0 -8/11 8/11 0&gt;, |37/11 0 -2/11 2/11 0&gt;]<br />
<a class="wiki_link" href="/Eigenmonzo">Eigenmonzos</a>: 2, 7/5<br />
<br />
<a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: ~7/6 = 271.426<br />
<br />
Map: [&lt;1 0 3 1 3|, &lt;0 7 -3 8 2|]<br />
<a class="wiki_link" href="/edo">Edos</a>: <a class="wiki_link" href="/22edo">22</a>, <a class="wiki_link" href="/31edo">31</a>, <a class="wiki_link" href="/53edo">53</a>, <a class="wiki_link" href="/84edo">84e</a><br />
Badness: 0.0152<br />
<br />
<!-- ws:start:WikiTextHeadingRule:6:&lt;h2&gt; --><h2 id="toc3"><a name="Orwell-13-limit"></a><!-- ws:end:WikiTextHeadingRule:6 -->13-limit</h2>
Commas: 99/98, 121/120, 176/175, 275/273<br />
<br />
<a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: ~7/6 = 271.546<br />
<br />
Map: [&lt;1 0 3 1 3 8|, &lt;0 7 -3 8 2 -19|]<br />
EDOs: 22, 31, 53, 84e, 137e<br />
Badness: 0.0197<br />
<br />
<!-- ws:start:WikiTextHeadingRule:8:&lt;h2&gt; --><h2 id="toc4"><a name="Orwell-Blair"></a><!-- ws:end:WikiTextHeadingRule:8 -->Blair</h2>
Commas: 65/64, 78/77, 91/90, 99/98<br />
<br />
POTE generator: ~7/6 = 271.301<br />
<br />
Map: [&lt;1 0 3 1 3 3|, &lt;0 7 -3 8 2 3|]<br />
EDOs: 9, 22, 31f<br />
Badness: 0.0231<br />
<br />
<!-- ws:start:WikiTextHeadingRule:10:&lt;h2&gt; --><h2 id="toc5"><a name="Orwell-Newspeak"></a><!-- ws:end:WikiTextHeadingRule:10 -->Newspeak</h2>
Commas: 225/224, 441/440, 1728/1715<br />
<br />
POTE tuning: ~7/6 = 271.288<br />
<br />
Map: [&lt;1 0 3 1 -4|, &lt;0 7 -3 8 33|]<br />
EDOs: 31, 84, 115, 376b, 491bd, 606bde<br />
Badness: 0.0314<br />
<br />
<!-- ws:start:WikiTextHeadingRule:12:&lt;h2&gt; --><h2 id="toc6"><a name="Orwell-Winston"></a><!-- ws:end:WikiTextHeadingRule:12 -->Winston</h2>
Commas: 66/65, 99/98, 105/104, 121/120<br />
<br />
<a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: ~7/6 = 271.088<br />
<br />
Map: [&lt;1 0 3 1 3 1|, &lt;0 7 -3 8 2 12|]<br />
EDOs: 22f, 31<br />
Badness: 0.0199<br />
<br />
<!-- ws:start:WikiTextHeadingRule:14:&lt;h1&gt; --><h1 id="toc7"><a name="Doublethink"></a><!-- ws:end:WikiTextHeadingRule:14 -->Doublethink</h1>
Commas: 99/98, 121/120, 169/168, 176/175<br />
<br />
POTE tuning: ~13/12 = 135.723<br />
<br />
Map: [&lt;1 0 3 1 3 2|, &lt;0 14 -6 16 4 15|]<br />
EDOs: 9, 44, 53, 115ef, 168ef<br />
Badness: 0.0271<br />
<br />
<!-- ws:start:WikiTextHeadingRule:16:&lt;h1&gt; --><h1 id="toc8"><a name="Borwell"></a><!-- ws:end:WikiTextHeadingRule:16 -->Borwell</h1>
 Commas: 225/224, 243/242, 1728/1715<br />
<br />
POTE generator: ~55/36 = 735.752<br />
<br />
Map: [&lt;1 7 0 9 17|, &lt;0 -14 6 -16 -35|]<br />
EDOs: 31, 106, 137, 442bd<br />
Badness: 0.0384<br />
<br />
<!-- ws:start:WikiTextHeadingRule:18:&lt;h1&gt; --><h1 id="toc9"><a name="Triwell"></a><!-- ws:end:WikiTextHeadingRule:18 -->Triwell</h1>
Commas: 1029/1024, 235298/234375<br />
<br />
POTE generator: ~448/375 = 309.472<br />
<br />
Map: [&lt;1 7 0 1|, &lt;0 -21 9 7]]<br />
Wedgie: &lt;&lt;21 -9 -7 -63 -70 9||<br />
EDOs: 31, 97, 128, 159, 190<br />
Badness: 0.0806<br />
<br />
<!-- ws:start:WikiTextHeadingRule:20:&lt;h2&gt; --><h2 id="toc10"><a name="Triwell-11-limit"></a><!-- ws:end:WikiTextHeadingRule:20 -->11-limit</h2>
Commas: 385/384, 441/440, 456533/455625<br />
<br />
POTE generator: ~448/375 = 309.471<br />
<br />
Map: [&lt;1 7 0 1 13|, &lt;0 -21 9 7 -37]]<br />
EDOs: 31, 97, 128, 159, 190<br />
Badness: 0.0298<br />
<br />
<!-- ws:start:WikiTextHeadingRule:22:&lt;h1&gt; --><h1 id="toc11"><a name="Music"></a><!-- ws:end:WikiTextHeadingRule:22 -->Music</h1>
 <a class="wiki_link_ext" href="http://www.archive.org/details/TrioInOrwell" rel="nofollow">Trio in Orwell</a> <a class="wiki_link_ext" href="http://www.archive.org/download/TrioInOrwell/TrioInOrwell.mp3" rel="nofollow">play</a> by <a class="wiki_link" href="/Gene%20Ward%20Smith">Gene Ward Smith</a><br />
<a class="wiki_link_ext" href="http://soundclick.com/share?songid=9101705" rel="nofollow">one drop of rain</a>, <a class="wiki_link_ext" href="http://soundclick.com/share?songid=9101704" rel="nofollow">i've come with a bucket of roses</a>, and <a class="wiki_link_ext" href="http://soundclick.com/share?songid=8839071" rel="nofollow">my own house</a> by <a class="wiki_link" href="/Andrew%20Heathwaite">Andrew Heathwaite</a><br />
<a class="wiki_link_ext" href="http://micro.soonlabel.com/orwell/daily20100721-gpo-owellian-cameras.mp3" rel="nofollow">Orwellian Cameras</a> by <a class="wiki_link" href="/Chris%20Vaisvil">Chris Vaisvil</a></body></html>