Pythagorean family: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>xenwolf
**Imported revision 237585033 - Original comment: **
Wikispaces>genewardsmith
**Imported revision 280729286 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:xenwolf|xenwolf]] and made on <tt>2011-06-19 16:28:46 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-11-30 14:42:44 UTC</tt>.<br>
: The original revision id was <tt>237585033</tt>.<br>
: The original revision id was <tt>280729286</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">The Pythagorean family tempers out the Pythagorean comma, 531441/524288 = |-19 12&gt;, and hence the fifths form a closed 12-note circle of fifths, identical to [[12edo]]. While the tuning of the fifth will be that of 12et, two cents flat, the tuning of the larger primes is not so constrained, and the point of these temperaments is to improve on it.
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[toc|flat]]
 
The Pythagorean family tempers out the Pythagorean comma, 531441/524288 = |-19 12&gt;, and hence the fifths form a closed 12-note circle of fifths, identical to [[12edo]]. While the tuning of the fifth will be that of 12et, two cents flat, the tuning of the larger primes is not so constrained, and the point of these temperaments is to improve on it.


[[POTE tuning|POTE generator]]: 15.116
[[POTE tuning|POTE generator]]: 15.116
Line 13: Line 15:
EDOs: [[12edo|12]], [[72edo|72]], [[84edo|84]], 156, 240, 396
EDOs: [[12edo|12]], [[72edo|72]], [[84edo|84]], 156, 240, 396


===Compton temperament===
=Compton temperament=
In terms of the normal list, compton adds 413343/409600 = |-14 10 -2 1&gt; to the Pythagorean comma; however it can also be characterized by saying it adds 225/224. Compton, however, does not need to be used as a 7-limit temperament; in the 5-limit it becomes the rank two 5-limit temperament tempering out the Pythagorean comma. In terms of equal temperaments, it is the 12&amp;72 temperament, and [[72edo]], [[84edo]] or [[240edo]] make for good tunings. Possible generators are 21/20, 10/9, the secor, 6/5, 5/4, 7/5 and most importantly, 81/80.  
In terms of the normal list, compton adds 413343/409600 = |-14 10 -2 1&gt; to the Pythagorean comma; however it can also be characterized by saying it adds 225/224. Compton, however, does not need to be used as a 7-limit temperament; in the 5-limit it becomes the rank two 5-limit temperament tempering out the Pythagorean comma. In terms of equal temperaments, it is the 12&amp;72 temperament, and [[72edo]], [[84edo]] or [[240edo]] make for good tunings. Possible generators are 21/20, 10/9, the secor, 6/5, 5/4, 7/5 and most importantly, 81/80.  


Line 35: Line 37:
EDOs: 12, 60, 72, 2940
EDOs: 12, 60, 72, 2940


===Catler temperament===
=Catler temperament=
In terms of the normal comma list, catler is characterized by the addition of the schisma, 32805/32768, to the Pythagorean comma, though it can also be characterized as adding 81/80, 128/125 or 648/625. In any event, the 5-limit is exactly the same as the 5-limit of [[12edo]]. Catler can also be characterized as the 12&amp;24 temperament. [[36edo]] or [[48edo]] are possible tunings, and 36/35, 21/20, 15/14, 8/7, 7/6, 6/5, 9/7 or 7/5 are possible generators.   
In terms of the normal comma list, catler is characterized by the addition of the schisma, 32805/32768, to the Pythagorean comma, though it can also be characterized as adding 81/80, 128/125 or 648/625. In any event, the 5-limit is exactly the same as the 5-limit of [[12edo]]. Catler can also be characterized as the 12&amp;24 temperament. [[36edo]] or [[48edo]] are possible tunings, and 36/35, 21/20, 15/14, 8/7, 7/6, 6/5, 9/7 or 7/5 are possible generators.   


Line 44: Line 46:
Map: [&lt;12 19 28 0|, &lt;0 0 0 1|]
Map: [&lt;12 19 28 0|, &lt;0 0 0 1|]
EDOs: 12, [[36edo|36]], [[48edo|48]], 132, 180
EDOs: 12, [[36edo|36]], [[48edo|48]], 132, 180
=Omicronbeta temperament=
Commas: 225/224, 243/242, 441/440, 4375/4356
Generator: ~13/8 = 837.814
Map: [&lt;72 114 167 202 249 266|, &lt;0 0 0 0 0 1|]
EDOs: 72, 144, 216c, 288cdf, 504bcdef
Badness: 0.0300
</pre></div>
</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Pythagorean family&lt;/title&gt;&lt;/head&gt;&lt;body&gt;The Pythagorean family tempers out the Pythagorean comma, 531441/524288 = |-19 12&amp;gt;, and hence the fifths form a closed 12-note circle of fifths, identical to &lt;a class="wiki_link" href="/12edo"&gt;12edo&lt;/a&gt;. While the tuning of the fifth will be that of 12et, two cents flat, the tuning of the larger primes is not so constrained, and the point of these temperaments is to improve on it.&lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Pythagorean family&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:6:&amp;lt;img id=&amp;quot;wikitext@@toc@@flat&amp;quot; class=&amp;quot;WikiMedia WikiMediaTocFlat&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/flat?w=100&amp;amp;h=16&amp;quot;/&amp;gt; --&gt;&lt;!-- ws:end:WikiTextTocRule:6 --&gt;&lt;!-- ws:start:WikiTextTocRule:7: --&gt;&lt;a href="#Compton temperament"&gt;Compton temperament&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:7 --&gt;&lt;!-- ws:start:WikiTextTocRule:8: --&gt; | &lt;a href="#Catler temperament"&gt;Catler temperament&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:8 --&gt;&lt;!-- ws:start:WikiTextTocRule:9: --&gt; | &lt;a href="#Omicronbeta temperament"&gt;Omicronbeta temperament&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:9 --&gt;&lt;!-- ws:start:WikiTextTocRule:10: --&gt;
&lt;!-- ws:end:WikiTextTocRule:10 --&gt;&lt;br /&gt;
The Pythagorean family tempers out the Pythagorean comma, 531441/524288 = |-19 12&amp;gt;, and hence the fifths form a closed 12-note circle of fifths, identical to &lt;a class="wiki_link" href="/12edo"&gt;12edo&lt;/a&gt;. While the tuning of the fifth will be that of 12et, two cents flat, the tuning of the larger primes is not so constrained, and the point of these temperaments is to improve on it.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link" href="/POTE%20tuning"&gt;POTE generator&lt;/a&gt;: 15.116&lt;br /&gt;
&lt;a class="wiki_link" href="/POTE%20tuning"&gt;POTE generator&lt;/a&gt;: 15.116&lt;br /&gt;
Line 53: Line 66:
EDOs: &lt;a class="wiki_link" href="/12edo"&gt;12&lt;/a&gt;, &lt;a class="wiki_link" href="/72edo"&gt;72&lt;/a&gt;, &lt;a class="wiki_link" href="/84edo"&gt;84&lt;/a&gt;, 156, 240, 396&lt;br /&gt;
EDOs: &lt;a class="wiki_link" href="/12edo"&gt;12&lt;/a&gt;, &lt;a class="wiki_link" href="/72edo"&gt;72&lt;/a&gt;, &lt;a class="wiki_link" href="/84edo"&gt;84&lt;/a&gt;, 156, 240, 396&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc0"&gt;&lt;a name="x--Compton temperament"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Compton temperament&lt;/h3&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Compton temperament"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Compton temperament&lt;/h1&gt;
In terms of the normal list, compton adds 413343/409600 = |-14 10 -2 1&amp;gt; to the Pythagorean comma; however it can also be characterized by saying it adds 225/224. Compton, however, does not need to be used as a 7-limit temperament; in the 5-limit it becomes the rank two 5-limit temperament tempering out the Pythagorean comma. In terms of equal temperaments, it is the 12&amp;amp;72 temperament, and &lt;a class="wiki_link" href="/72edo"&gt;72edo&lt;/a&gt;, &lt;a class="wiki_link" href="/84edo"&gt;84edo&lt;/a&gt; or &lt;a class="wiki_link" href="/240edo"&gt;240edo&lt;/a&gt; make for good tunings. Possible generators are 21/20, 10/9, the secor, 6/5, 5/4, 7/5 and most importantly, 81/80. &lt;br /&gt;
In terms of the normal list, compton adds 413343/409600 = |-14 10 -2 1&amp;gt; to the Pythagorean comma; however it can also be characterized by saying it adds 225/224. Compton, however, does not need to be used as a 7-limit temperament; in the 5-limit it becomes the rank two 5-limit temperament tempering out the Pythagorean comma. In terms of equal temperaments, it is the 12&amp;amp;72 temperament, and &lt;a class="wiki_link" href="/72edo"&gt;72edo&lt;/a&gt;, &lt;a class="wiki_link" href="/84edo"&gt;84edo&lt;/a&gt; or &lt;a class="wiki_link" href="/240edo"&gt;240edo&lt;/a&gt; make for good tunings. Possible generators are 21/20, 10/9, the secor, 6/5, 5/4, 7/5 and most importantly, 81/80. &lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Line 75: Line 88:
EDOs: 12, 60, 72, 2940&lt;br /&gt;
EDOs: 12, 60, 72, 2940&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc1"&gt;&lt;a name="x--Catler temperament"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Catler temperament&lt;/h3&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="Catler temperament"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Catler temperament&lt;/h1&gt;
In terms of the normal comma list, catler is characterized by the addition of the schisma, 32805/32768, to the Pythagorean comma, though it can also be characterized as adding 81/80, 128/125 or 648/625. In any event, the 5-limit is exactly the same as the 5-limit of &lt;a class="wiki_link" href="/12edo"&gt;12edo&lt;/a&gt;. Catler can also be characterized as the 12&amp;amp;24 temperament. &lt;a class="wiki_link" href="/36edo"&gt;36edo&lt;/a&gt; or &lt;a class="wiki_link" href="/48edo"&gt;48edo&lt;/a&gt; are possible tunings, and 36/35, 21/20, 15/14, 8/7, 7/6, 6/5, 9/7 or 7/5 are possible generators.  &lt;br /&gt;
In terms of the normal comma list, catler is characterized by the addition of the schisma, 32805/32768, to the Pythagorean comma, though it can also be characterized as adding 81/80, 128/125 or 648/625. In any event, the 5-limit is exactly the same as the 5-limit of &lt;a class="wiki_link" href="/12edo"&gt;12edo&lt;/a&gt;. Catler can also be characterized as the 12&amp;amp;24 temperament. &lt;a class="wiki_link" href="/36edo"&gt;36edo&lt;/a&gt; or &lt;a class="wiki_link" href="/48edo"&gt;48edo&lt;/a&gt; are possible tunings, and 36/35, 21/20, 15/14, 8/7, 7/6, 6/5, 9/7 or 7/5 are possible generators.  &lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Line 83: Line 96:
&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;12 19 28 0|, &amp;lt;0 0 0 1|]&lt;br /&gt;
Map: [&amp;lt;12 19 28 0|, &amp;lt;0 0 0 1|]&lt;br /&gt;
EDOs: 12, &lt;a class="wiki_link" href="/36edo"&gt;36&lt;/a&gt;, &lt;a class="wiki_link" href="/48edo"&gt;48&lt;/a&gt;, 132, 180&lt;/body&gt;&lt;/html&gt;</pre></div>
EDOs: 12, &lt;a class="wiki_link" href="/36edo"&gt;36&lt;/a&gt;, &lt;a class="wiki_link" href="/48edo"&gt;48&lt;/a&gt;, 132, 180&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc2"&gt;&lt;a name="Omicronbeta temperament"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;Omicronbeta temperament&lt;/h1&gt;
Commas: 225/224, 243/242, 441/440, 4375/4356&lt;br /&gt;
&lt;br /&gt;
Generator: ~13/8 = 837.814&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;72 114 167 202 249 266|, &amp;lt;0 0 0 0 0 1|]&lt;br /&gt;
EDOs: 72, 144, 216c, 288cdf, 504bcdef&lt;br /&gt;
Badness: 0.0300&lt;/body&gt;&lt;/html&gt;</pre></div>

Revision as of 14:42, 30 November 2011

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author genewardsmith and made on 2011-11-30 14:42:44 UTC.
The original revision id was 280729286.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

[[toc|flat]]

The Pythagorean family tempers out the Pythagorean comma, 531441/524288 = |-19 12>, and hence the fifths form a closed 12-note circle of fifths, identical to [[12edo]]. While the tuning of the fifth will be that of 12et, two cents flat, the tuning of the larger primes is not so constrained, and the point of these temperaments is to improve on it.

[[POTE tuning|POTE generator]]: 15.116

Map: [<12 19 0|, <0 0 1|]
EDOs: [[12edo|12]], [[72edo|72]], [[84edo|84]], 156, 240, 396

=Compton temperament=
In terms of the normal list, compton adds 413343/409600 = |-14 10 -2 1> to the Pythagorean comma; however it can also be characterized by saying it adds 225/224. Compton, however, does not need to be used as a 7-limit temperament; in the 5-limit it becomes the rank two 5-limit temperament tempering out the Pythagorean comma. In terms of equal temperaments, it is the 12&72 temperament, and [[72edo]], [[84edo]] or [[240edo]] make for good tunings. Possible generators are 21/20, 10/9, the secor, 6/5, 5/4, 7/5 and most importantly, 81/80. 

In the either the 5 or 7-limit, [[240edo]] is an excellent tuning, with 81/80 coming in at 15 cents exactly. The major third is sharp by 13.686 cents, and the minor third flat by 15.641 cents; adjusting these down and up by 15 cents puts them in excellent tune.

In terms of the normal comma list, we may add 8019/8000 to get to the 11-limit version of compton, which also adds 441/440. For this [[72edo]] can be recommended as a tuning.

Commas: 225/224, 250047/250000

[[POTE tuning|POTE generator]]: 16.225

Map: [<12 19 0 -22|, <0 0 1 2|]
EDOs: 12, [[60edo|60]], 72, 228, 444

11-limit
Commas: 225/224, 441/440, 4375/4356

[[POTE tuning|POTE generator]]: 16.734

Map: [<12 19 0 -22 -42|, <0 0 1 2 3|]
EDOs: 12, 60, 72, 2940

=Catler temperament=
In terms of the normal comma list, catler is characterized by the addition of the schisma, 32805/32768, to the Pythagorean comma, though it can also be characterized as adding 81/80, 128/125 or 648/625. In any event, the 5-limit is exactly the same as the 5-limit of [[12edo]]. Catler can also be characterized as the 12&24 temperament. [[36edo]] or [[48edo]] are possible tunings, and 36/35, 21/20, 15/14, 8/7, 7/6, 6/5, 9/7 or 7/5 are possible generators.  

Commas: 81/80, 128/125

[[POTE tuning|POTE generator]]: 26.790

Map: [<12 19 28 0|, <0 0 0 1|]
EDOs: 12, [[36edo|36]], [[48edo|48]], 132, 180

=Omicronbeta temperament=
Commas: 225/224, 243/242, 441/440, 4375/4356

Generator: ~13/8 = 837.814

Map: [<72 114 167 202 249 266|, <0 0 0 0 0 1|]
EDOs: 72, 144, 216c, 288cdf, 504bcdef
Badness: 0.0300

Original HTML content:

<html><head><title>Pythagorean family</title></head><body><!-- ws:start:WikiTextTocRule:6:&lt;img id=&quot;wikitext@@toc@@flat&quot; class=&quot;WikiMedia WikiMediaTocFlat&quot; title=&quot;Table of Contents&quot; src=&quot;/site/embedthumbnail/toc/flat?w=100&amp;h=16&quot;/&gt; --><!-- ws:end:WikiTextTocRule:6 --><!-- ws:start:WikiTextTocRule:7: --><a href="#Compton temperament">Compton temperament</a><!-- ws:end:WikiTextTocRule:7 --><!-- ws:start:WikiTextTocRule:8: --> | <a href="#Catler temperament">Catler temperament</a><!-- ws:end:WikiTextTocRule:8 --><!-- ws:start:WikiTextTocRule:9: --> | <a href="#Omicronbeta temperament">Omicronbeta temperament</a><!-- ws:end:WikiTextTocRule:9 --><!-- ws:start:WikiTextTocRule:10: -->
<!-- ws:end:WikiTextTocRule:10 --><br />
The Pythagorean family tempers out the Pythagorean comma, 531441/524288 = |-19 12&gt;, and hence the fifths form a closed 12-note circle of fifths, identical to <a class="wiki_link" href="/12edo">12edo</a>. While the tuning of the fifth will be that of 12et, two cents flat, the tuning of the larger primes is not so constrained, and the point of these temperaments is to improve on it.<br />
<br />
<a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: 15.116<br />
<br />
Map: [&lt;12 19 0|, &lt;0 0 1|]<br />
EDOs: <a class="wiki_link" href="/12edo">12</a>, <a class="wiki_link" href="/72edo">72</a>, <a class="wiki_link" href="/84edo">84</a>, 156, 240, 396<br />
<br />
<!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Compton temperament"></a><!-- ws:end:WikiTextHeadingRule:0 -->Compton temperament</h1>
In terms of the normal list, compton adds 413343/409600 = |-14 10 -2 1&gt; to the Pythagorean comma; however it can also be characterized by saying it adds 225/224. Compton, however, does not need to be used as a 7-limit temperament; in the 5-limit it becomes the rank two 5-limit temperament tempering out the Pythagorean comma. In terms of equal temperaments, it is the 12&amp;72 temperament, and <a class="wiki_link" href="/72edo">72edo</a>, <a class="wiki_link" href="/84edo">84edo</a> or <a class="wiki_link" href="/240edo">240edo</a> make for good tunings. Possible generators are 21/20, 10/9, the secor, 6/5, 5/4, 7/5 and most importantly, 81/80. <br />
<br />
In the either the 5 or 7-limit, <a class="wiki_link" href="/240edo">240edo</a> is an excellent tuning, with 81/80 coming in at 15 cents exactly. The major third is sharp by 13.686 cents, and the minor third flat by 15.641 cents; adjusting these down and up by 15 cents puts them in excellent tune.<br />
<br />
In terms of the normal comma list, we may add 8019/8000 to get to the 11-limit version of compton, which also adds 441/440. For this <a class="wiki_link" href="/72edo">72edo</a> can be recommended as a tuning.<br />
<br />
Commas: 225/224, 250047/250000<br />
<br />
<a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: 16.225<br />
<br />
Map: [&lt;12 19 0 -22|, &lt;0 0 1 2|]<br />
EDOs: 12, <a class="wiki_link" href="/60edo">60</a>, 72, 228, 444<br />
<br />
11-limit<br />
Commas: 225/224, 441/440, 4375/4356<br />
<br />
<a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: 16.734<br />
<br />
Map: [&lt;12 19 0 -22 -42|, &lt;0 0 1 2 3|]<br />
EDOs: 12, 60, 72, 2940<br />
<br />
<!-- ws:start:WikiTextHeadingRule:2:&lt;h1&gt; --><h1 id="toc1"><a name="Catler temperament"></a><!-- ws:end:WikiTextHeadingRule:2 -->Catler temperament</h1>
In terms of the normal comma list, catler is characterized by the addition of the schisma, 32805/32768, to the Pythagorean comma, though it can also be characterized as adding 81/80, 128/125 or 648/625. In any event, the 5-limit is exactly the same as the 5-limit of <a class="wiki_link" href="/12edo">12edo</a>. Catler can also be characterized as the 12&amp;24 temperament. <a class="wiki_link" href="/36edo">36edo</a> or <a class="wiki_link" href="/48edo">48edo</a> are possible tunings, and 36/35, 21/20, 15/14, 8/7, 7/6, 6/5, 9/7 or 7/5 are possible generators.  <br />
<br />
Commas: 81/80, 128/125<br />
<br />
<a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: 26.790<br />
<br />
Map: [&lt;12 19 28 0|, &lt;0 0 0 1|]<br />
EDOs: 12, <a class="wiki_link" href="/36edo">36</a>, <a class="wiki_link" href="/48edo">48</a>, 132, 180<br />
<br />
<!-- ws:start:WikiTextHeadingRule:4:&lt;h1&gt; --><h1 id="toc2"><a name="Omicronbeta temperament"></a><!-- ws:end:WikiTextHeadingRule:4 -->Omicronbeta temperament</h1>
Commas: 225/224, 243/242, 441/440, 4375/4356<br />
<br />
Generator: ~13/8 = 837.814<br />
<br />
Map: [&lt;72 114 167 202 249 266|, &lt;0 0 0 0 0 1|]<br />
EDOs: 72, 144, 216c, 288cdf, 504bcdef<br />
Badness: 0.0300</body></html>