Overtone scale: Difference between revisions
Jump to navigation
Jump to search
Wikispaces>guest **Imported revision 175809095 - Original comment: ** |
Wikispaces>Andrew_Heathwaite **Imported revision 264958032 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User: | : This revision was by author [[User:Andrew_Heathwaite|Andrew_Heathwaite]] and made on <tt>2011-10-14 22:22:00 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>264958032</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
<h4>Original Wikitext content:</h4> | <h4>Original Wikitext content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">== | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">==Introduction== | ||
One way of using the [[OverToneSeries|overtone series]] to generate scalar material is to take an octave-long subset of the series and make it octave-repeating. | One way of using the [[OverToneSeries|overtone series]] to generate scalar material is to take an octave-long subset of the series and make it octave-repeating. So for instance, starting at the fifth overtone and continuing up the sequence to the tenth overtone (which is a doubling of five, and thus an octave higher) produces a pentatonic scale: | ||
So for instance, starting at the fifth overtone and continuing up the sequence to the tenth overtone (which is a doubling of five, and thus an octave higher) produces a pentatonic scale: | |||
|| overtone || 5 || 6 || 7 || 8 || 9 || 10 || | || overtone || 5 || 6 || 7 || 8 || 9 || 10 || | ||
Line 20: | Line 18: | ||
|| common name || just minor third || septimal subminor third || septimal supermajor second || large major second || small major second || | || common name || just minor third || septimal subminor third || septimal supermajor second || large major second || small major second || | ||
[[Denny Genovese]] would call the above scale "Mode 5 of the Harmonic Series," or "Mode 5" for short. | |||
==A Solfege System== | |||
[[Andrew Heathwaite]] proposes a solfege system for overtones 16-32 (Mode 16): | |||
|| overtone || 16 || 17 || 18 || 19 || 20 || 21 || 22 || 23 || 24 || 25 || 26 || 27 || 28 || 29 || 30 || 31 || 32 || | || overtone || 16 || 17 || 18 || 19 || 20 || 21 || 22 || 23 || 24 || 25 || 26 || 27 || 28 || 29 || 30 || 31 || 32 || | ||
Line 30: | Line 30: | ||
Thus, the pentatonic scale in the example above could be sung: **mi sol ta do re mi** | Thus, the pentatonic scale in the example above could be sung: **mi sol ta do re mi** | ||
==Twelve Scales== | |||
For those interested in learning to sing and hear just intervals, here are twelve otonal scales to try. I leave it up to the curious learner to decide the value, beauty, or usefulness of these particular scales for their compositional purposes. | |||
|| || || 1 || 2 || 3 || 4 || 5 || 6 || 7 || 8 || 9 || 10 || 11 || 12 || 13 || 14 || 15 || 16 || 17 || 18 || 19 || 20 || 21 || 22 || 23 || 24 || | |||
|| Mode 1 || 1-note || **do** || **do** || || || || || || || || || || || || || || || || || || || || || || || | |||
|| Mode 2 || 2-note || || **do** || **sol** || **do** || || || || || || || || || || || || || || || || || || || || || | |||
|| Mode 3 || 3-note || || || **sol** || **do** || **mi** || **sol** || || || || || || || || || || || || || || || || || || || | |||
|| Mode 4 || 4-note || || || || **do** || **mi** || **sol** || **ta** || **do** || || || || || || || || || || || || || || || || || | |||
|| Mode 5 || 5-note || || || || || **mi** || **sol** || **ta** || **do** || **re** || **mi** || || || || || || || || || || || || || || || | |||
|| Mode 6 || 6-note || || || || || || **sol** || **ta** || **do** || **re** || **mi** || **fu** || **sol** || || || || || || || || || || || || || | |||
|| Mode 7 || 7-note || || || || || || || **ta** || **do** || **re** || **mi** || **fu** || **sol** || **lu** || **ta** || || || || || || || || || || || | |||
|| Mode 8 || 8-note || || || || || || || || **do** || **re** || **mi** || **fu** || **sol** || **lu** || **ta** || **ti** || **do** || || || || || || || || || | |||
|| Mode 9 || 9-note || || || || || || || || || **re** || **mi** || **fu** || **sol** || **lu** || **ta** || **ti** || **do** || **ra** || **re** || || || || || || || | |||
|| Mode 10 || 10-note || || || || || || || || || || **mi** || **fu** || **sol** || **lu** || **ta** || **ti** || **do** || **ra** || **re** || **me** || **mi** || || || || || | |||
|| Mode 11 || 11-note || || || || || || || || || || || **fu** || **sol** || **lu** || **ta** || **ti** || **do** || **ra** || **re** || **me** || **mi** || **fe** || **fu** || || || | |||
|| Mode 12 || 12-note || || || || || || || || || || || || **sol** || **lu** || **ta** || **ti** || **do** || **ra** || **re** || **me** || **mi** || **fe** || **fu** || **su** || **sol** || | |||
==Next Steps== | |||
== | |||
Here are some next steps: | Here are some next steps: | ||
Line 59: | Line 57: | ||
* Borrow overtones & undertones from the overtones & undertones of the fundamental -- this process can produce rich fields of interlocking harmonic series, and is often the sort of thing that composers do when they're composing in just intonation. Harry Partch's "Monophonic Fabric," which consists of 43 unequal tones per octave, is one famous example.</pre></div> | * Borrow overtones & undertones from the overtones & undertones of the fundamental -- this process can produce rich fields of interlocking harmonic series, and is often the sort of thing that composers do when they're composing in just intonation. Harry Partch's "Monophonic Fabric," which consists of 43 unequal tones per octave, is one famous example.</pre></div> | ||
<h4>Original HTML content:</h4> | <h4>Original HTML content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>overtone scales</title></head><body><!-- ws:start:WikiTextHeadingRule:0:&lt;h2&gt; --><h2 id="toc0"><a name="x- | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>overtone scales</title></head><body><!-- ws:start:WikiTextHeadingRule:0:&lt;h2&gt; --><h2 id="toc0"><a name="x-Introduction"></a><!-- ws:end:WikiTextHeadingRule:0 -->Introduction</h2> | ||
<br /> | <br /> | ||
One way of using the <a class="wiki_link" href="/OverToneSeries">overtone series</a> to generate scalar material is to take an octave-long subset of the series and make it octave-repeating. | One way of using the <a class="wiki_link" href="/OverToneSeries">overtone series</a> to generate scalar material is to take an octave-long subset of the series and make it octave-repeating. So for instance, starting at the fifth overtone and continuing up the sequence to the tenth overtone (which is a doubling of five, and thus an octave higher) produces a pentatonic scale:<br /> | ||
So for instance, starting at the fifth overtone and continuing up the sequence to the tenth overtone (which is a doubling of five, and thus an octave higher) produces a pentatonic scale:<br /> | |||
<br /> | <br /> | ||
Line 139: | Line 135: | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule:2:&lt;h2&gt; --><h2 id="toc1"><a name="x- | <a class="wiki_link" href="/Denny%20Genovese">Denny Genovese</a> would call the above scale &quot;Mode 5 of the Harmonic Series,&quot; or &quot;Mode 5&quot; for short.<br /> | ||
<br /> | |||
<!-- ws:start:WikiTextHeadingRule:2:&lt;h2&gt; --><h2 id="toc1"><a name="x-A Solfege System"></a><!-- ws:end:WikiTextHeadingRule:2 -->A Solfege System</h2> | |||
<br /> | <br /> | ||
<a class="wiki_link" href="/Andrew%20Heathwaite">Andrew Heathwaite</a> proposes a solfege system for overtones 16-32 (Mode 16):<br /> | |||
<br /> | <br /> | ||
Line 265: | Line 263: | ||
Thus, the pentatonic scale in the example above could be sung: <strong>mi sol ta do re mi</strong><br /> | Thus, the pentatonic scale in the example above could be sung: <strong>mi sol ta do re mi</strong><br /> | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule:4:&lt;h2&gt; --><h2 id="toc2"><a name="x-Twelve Scales"></a><!-- ws:end:WikiTextHeadingRule:4 -->Twelve Scales</h2> | |||
<!-- ws:start:WikiTextHeadingRule:4:&lt;h2&gt; --><h2 id="toc2"><a name="x- | |||
<br /> | <br /> | ||
For those interested in learning to sing and hear just intervals, here are twelve otonal scales to try. I leave it up to the curious learner to decide the value, beauty, or usefulness of these particular scales for their compositional purposes.<br /> | |||
<br /> | <br /> | ||
Line 275: | Line 271: | ||
<table class="wiki_table"> | <table class="wiki_table"> | ||
<tr> | <tr> | ||
<td><br /> | |||
</td> | |||
<td><br /> | <td><br /> | ||
</td> | </td> | ||
Line 327: | Line 325: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td>Mode 1<br /> | |||
</td> | |||
<td>1-note<br /> | <td>1-note<br /> | ||
</td> | </td> | ||
Line 379: | Line 379: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td>Mode 2<br /> | |||
</td> | |||
<td>2-note<br /> | <td>2-note<br /> | ||
</td> | </td> | ||
Line 431: | Line 433: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td>Mode 3<br /> | |||
</td> | |||
<td>3-note<br /> | <td>3-note<br /> | ||
</td> | </td> | ||
Line 483: | Line 487: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td>Mode 4<br /> | |||
</td> | |||
<td>4-note<br /> | <td>4-note<br /> | ||
</td> | </td> | ||
Line 535: | Line 541: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td>Mode 5<br /> | |||
</td> | |||
<td>5-note<br /> | <td>5-note<br /> | ||
</td> | </td> | ||
Line 587: | Line 595: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td>Mode 6<br /> | |||
</td> | |||
<td>6-note<br /> | <td>6-note<br /> | ||
</td> | </td> | ||
Line 639: | Line 649: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td>Mode 7<br /> | |||
</td> | |||
<td>7-note<br /> | <td>7-note<br /> | ||
</td> | </td> | ||
Line 691: | Line 703: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td>Mode 8<br /> | |||
</td> | |||
<td>8-note<br /> | <td>8-note<br /> | ||
</td> | </td> | ||
Line 743: | Line 757: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td>Mode 9<br /> | |||
</td> | |||
<td>9-note<br /> | <td>9-note<br /> | ||
</td> | </td> | ||
Line 795: | Line 811: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td>Mode 10<br /> | |||
</td> | |||
<td>10-note<br /> | <td>10-note<br /> | ||
</td> | </td> | ||
Line 847: | Line 865: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td>Mode 11<br /> | |||
</td> | |||
<td>11-note<br /> | <td>11-note<br /> | ||
</td> | </td> | ||
Line 899: | Line 919: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td>Mode 12<br /> | |||
</td> | |||
<td>12-note<br /> | <td>12-note<br /> | ||
</td> | </td> | ||
Line 953: | Line 975: | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule:6:&lt;h2&gt; --><h2 id="toc3"><a name="x- | <!-- ws:start:WikiTextHeadingRule:6:&lt;h2&gt; --><h2 id="toc3"><a name="x-Next Steps"></a><!-- ws:end:WikiTextHeadingRule:6 -->Next Steps</h2> | ||
<br /> | <br /> | ||
Here are some next steps:<br /> | Here are some next steps:<br /> | ||
<ul><li>Go beyond the 24th overtone (eg. overtones 16-32 or higher).</li><li>Experiment with using different pitches as the &quot;tonic&quot; of the scale (eg. <strong>sol lu ta do re mi fu sol</strong>, which could be taken as the 7-note scale starting on <strong>sol</strong>).</li><li>Take subsets of larger scales, which are not strict adjacent overtone scales (eg. <strong>do re fe sol ta do</strong>).</li><li>Learn the inversions of these scales, which would be <strong>undertone</strong> scales. (Undertone scales would have smaller steps at the bottom of the scale, which would get larger as one ascends.)</li><li>Borrow overtones &amp; undertones from the overtones &amp; undertones of the fundamental -- this process can produce rich fields of interlocking harmonic series, and is often the sort of thing that composers do when they're composing in just intonation. Harry Partch's &quot;Monophonic Fabric,&quot; which consists of 43 unequal tones per octave, is one famous example.</li></ul></body></html></pre></div> | <ul><li>Go beyond the 24th overtone (eg. overtones 16-32 or higher).</li><li>Experiment with using different pitches as the &quot;tonic&quot; of the scale (eg. <strong>sol lu ta do re mi fu sol</strong>, which could be taken as the 7-note scale starting on <strong>sol</strong>).</li><li>Take subsets of larger scales, which are not strict adjacent overtone scales (eg. <strong>do re fe sol ta do</strong>).</li><li>Learn the inversions of these scales, which would be <strong>undertone</strong> scales. (Undertone scales would have smaller steps at the bottom of the scale, which would get larger as one ascends.)</li><li>Borrow overtones &amp; undertones from the overtones &amp; undertones of the fundamental -- this process can produce rich fields of interlocking harmonic series, and is often the sort of thing that composers do when they're composing in just intonation. Harry Partch's &quot;Monophonic Fabric,&quot; which consists of 43 unequal tones per octave, is one famous example.</li></ul></body></html></pre></div> |
Revision as of 22:22, 14 October 2011
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author Andrew_Heathwaite and made on 2011-10-14 22:22:00 UTC.
- The original revision id was 264958032.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
==Introduction== One way of using the [[OverToneSeries|overtone series]] to generate scalar material is to take an octave-long subset of the series and make it octave-repeating. So for instance, starting at the fifth overtone and continuing up the sequence to the tenth overtone (which is a doubling of five, and thus an octave higher) produces a pentatonic scale: || overtone || 5 || 6 || 7 || 8 || 9 || 10 || || JI ratio || 1/1 || 6/5 || 7/5 || 8/5 || 9/5 || 2/1 || Such a scale has the overtonal characteristic of containing all [[superparticular]] steps ("superparticular" refers to ratios of the form n/(n-1)) that are decreasing in pitch size as one ascends the scale). || steps || 6:5 || 7:6 || 8:7 || 9:8 || 10:9 || || common name || just minor third || septimal subminor third || septimal supermajor second || large major second || small major second || [[Denny Genovese]] would call the above scale "Mode 5 of the Harmonic Series," or "Mode 5" for short. ==A Solfege System== [[Andrew Heathwaite]] proposes a solfege system for overtones 16-32 (Mode 16): || overtone || 16 || 17 || 18 || 19 || 20 || 21 || 22 || 23 || 24 || 25 || 26 || 27 || 28 || 29 || 30 || 31 || 32 || || JI ratio || 1/1 || 17/16 || 9/8 || 19/16 || 5/4 || 21/16 || 11/8 || 23/16 || 3/2 || 25/16 || 13/8 || 27/16 || 7/4 || 29/16 || 15/8 || 31/16 || 2/1 || || solfege || **do** || **ra** || **re** || **me** || **mi** || **fe** || **fu** || **su** || **sol** || **le** || **lu** || **la** || **ta** || **tu** || **ti** || **da** || **do** || Thus, the pentatonic scale in the example above could be sung: **mi sol ta do re mi** ==Twelve Scales== For those interested in learning to sing and hear just intervals, here are twelve otonal scales to try. I leave it up to the curious learner to decide the value, beauty, or usefulness of these particular scales for their compositional purposes. || || || 1 || 2 || 3 || 4 || 5 || 6 || 7 || 8 || 9 || 10 || 11 || 12 || 13 || 14 || 15 || 16 || 17 || 18 || 19 || 20 || 21 || 22 || 23 || 24 || || Mode 1 || 1-note || **do** || **do** || || || || || || || || || || || || || || || || || || || || || || || || Mode 2 || 2-note || || **do** || **sol** || **do** || || || || || || || || || || || || || || || || || || || || || || Mode 3 || 3-note || || || **sol** || **do** || **mi** || **sol** || || || || || || || || || || || || || || || || || || || || Mode 4 || 4-note || || || || **do** || **mi** || **sol** || **ta** || **do** || || || || || || || || || || || || || || || || || || Mode 5 || 5-note || || || || || **mi** || **sol** || **ta** || **do** || **re** || **mi** || || || || || || || || || || || || || || || || Mode 6 || 6-note || || || || || || **sol** || **ta** || **do** || **re** || **mi** || **fu** || **sol** || || || || || || || || || || || || || || Mode 7 || 7-note || || || || || || || **ta** || **do** || **re** || **mi** || **fu** || **sol** || **lu** || **ta** || || || || || || || || || || || || Mode 8 || 8-note || || || || || || || || **do** || **re** || **mi** || **fu** || **sol** || **lu** || **ta** || **ti** || **do** || || || || || || || || || || Mode 9 || 9-note || || || || || || || || || **re** || **mi** || **fu** || **sol** || **lu** || **ta** || **ti** || **do** || **ra** || **re** || || || || || || || || Mode 10 || 10-note || || || || || || || || || || **mi** || **fu** || **sol** || **lu** || **ta** || **ti** || **do** || **ra** || **re** || **me** || **mi** || || || || || || Mode 11 || 11-note || || || || || || || || || || || **fu** || **sol** || **lu** || **ta** || **ti** || **do** || **ra** || **re** || **me** || **mi** || **fe** || **fu** || || || || Mode 12 || 12-note || || || || || || || || || || || || **sol** || **lu** || **ta** || **ti** || **do** || **ra** || **re** || **me** || **mi** || **fe** || **fu** || **su** || **sol** || ==Next Steps== Here are some next steps: * Go beyond the 24th overtone (eg. overtones 16-32 or higher). * Experiment with using different pitches as the "tonic" of the scale (eg. **sol lu ta do re mi fu sol**, which could be taken as the 7-note scale starting on **sol**). * Take subsets of larger scales, which are not strict adjacent overtone scales (eg. **do re fe sol ta do**). * Learn the inversions of these scales, which would be **undertone** scales. (Undertone scales would have smaller steps at the bottom of the scale, which would get larger as one ascends.) * Borrow overtones & undertones from the overtones & undertones of the fundamental -- this process can produce rich fields of interlocking harmonic series, and is often the sort of thing that composers do when they're composing in just intonation. Harry Partch's "Monophonic Fabric," which consists of 43 unequal tones per octave, is one famous example.
Original HTML content:
<html><head><title>overtone scales</title></head><body><!-- ws:start:WikiTextHeadingRule:0:<h2> --><h2 id="toc0"><a name="x-Introduction"></a><!-- ws:end:WikiTextHeadingRule:0 -->Introduction</h2> <br /> One way of using the <a class="wiki_link" href="/OverToneSeries">overtone series</a> to generate scalar material is to take an octave-long subset of the series and make it octave-repeating. So for instance, starting at the fifth overtone and continuing up the sequence to the tenth overtone (which is a doubling of five, and thus an octave higher) produces a pentatonic scale:<br /> <br /> <table class="wiki_table"> <tr> <td>overtone<br /> </td> <td>5<br /> </td> <td>6<br /> </td> <td>7<br /> </td> <td>8<br /> </td> <td>9<br /> </td> <td>10<br /> </td> </tr> <tr> <td>JI ratio<br /> </td> <td>1/1<br /> </td> <td>6/5<br /> </td> <td>7/5<br /> </td> <td>8/5<br /> </td> <td>9/5<br /> </td> <td>2/1<br /> </td> </tr> </table> <br /> Such a scale has the overtonal characteristic of containing all <a class="wiki_link" href="/superparticular">superparticular</a> steps ("superparticular" refers to ratios of the form n/(n-1)) that are decreasing in pitch size as one ascends the scale).<br /> <br /> <table class="wiki_table"> <tr> <td>steps<br /> </td> <td>6:5<br /> </td> <td>7:6<br /> </td> <td>8:7<br /> </td> <td>9:8<br /> </td> <td>10:9<br /> </td> </tr> <tr> <td>common name<br /> </td> <td>just minor third<br /> </td> <td>septimal subminor third<br /> </td> <td>septimal supermajor second<br /> </td> <td>large major second<br /> </td> <td>small major second<br /> </td> </tr> </table> <br /> <a class="wiki_link" href="/Denny%20Genovese">Denny Genovese</a> would call the above scale "Mode 5 of the Harmonic Series," or "Mode 5" for short.<br /> <br /> <!-- ws:start:WikiTextHeadingRule:2:<h2> --><h2 id="toc1"><a name="x-A Solfege System"></a><!-- ws:end:WikiTextHeadingRule:2 -->A Solfege System</h2> <br /> <a class="wiki_link" href="/Andrew%20Heathwaite">Andrew Heathwaite</a> proposes a solfege system for overtones 16-32 (Mode 16):<br /> <br /> <table class="wiki_table"> <tr> <td>overtone<br /> </td> <td>16<br /> </td> <td>17<br /> </td> <td>18<br /> </td> <td>19<br /> </td> <td>20<br /> </td> <td>21<br /> </td> <td>22<br /> </td> <td>23<br /> </td> <td>24<br /> </td> <td>25<br /> </td> <td>26<br /> </td> <td>27<br /> </td> <td>28<br /> </td> <td>29<br /> </td> <td>30<br /> </td> <td>31<br /> </td> <td>32<br /> </td> </tr> <tr> <td>JI ratio<br /> </td> <td>1/1<br /> </td> <td>17/16<br /> </td> <td>9/8<br /> </td> <td>19/16<br /> </td> <td>5/4<br /> </td> <td>21/16<br /> </td> <td>11/8<br /> </td> <td>23/16<br /> </td> <td>3/2<br /> </td> <td>25/16<br /> </td> <td>13/8<br /> </td> <td>27/16<br /> </td> <td>7/4<br /> </td> <td>29/16<br /> </td> <td>15/8<br /> </td> <td>31/16<br /> </td> <td>2/1<br /> </td> </tr> <tr> <td>solfege<br /> </td> <td><strong>do</strong><br /> </td> <td><strong>ra</strong><br /> </td> <td><strong>re</strong><br /> </td> <td><strong>me</strong><br /> </td> <td><strong>mi</strong><br /> </td> <td><strong>fe</strong><br /> </td> <td><strong>fu</strong><br /> </td> <td><strong>su</strong><br /> </td> <td><strong>sol</strong><br /> </td> <td><strong>le</strong><br /> </td> <td><strong>lu</strong><br /> </td> <td><strong>la</strong><br /> </td> <td><strong>ta</strong><br /> </td> <td><strong>tu</strong><br /> </td> <td><strong>ti</strong><br /> </td> <td><strong>da</strong><br /> </td> <td><strong>do</strong><br /> </td> </tr> </table> <br /> Thus, the pentatonic scale in the example above could be sung: <strong>mi sol ta do re mi</strong><br /> <br /> <!-- ws:start:WikiTextHeadingRule:4:<h2> --><h2 id="toc2"><a name="x-Twelve Scales"></a><!-- ws:end:WikiTextHeadingRule:4 -->Twelve Scales</h2> <br /> For those interested in learning to sing and hear just intervals, here are twelve otonal scales to try. I leave it up to the curious learner to decide the value, beauty, or usefulness of these particular scales for their compositional purposes.<br /> <br /> <table class="wiki_table"> <tr> <td><br /> </td> <td><br /> </td> <td>1<br /> </td> <td>2<br /> </td> <td>3<br /> </td> <td>4<br /> </td> <td>5<br /> </td> <td>6<br /> </td> <td>7<br /> </td> <td>8<br /> </td> <td>9<br /> </td> <td>10<br /> </td> <td>11<br /> </td> <td>12<br /> </td> <td>13<br /> </td> <td>14<br /> </td> <td>15<br /> </td> <td>16<br /> </td> <td>17<br /> </td> <td>18<br /> </td> <td>19<br /> </td> <td>20<br /> </td> <td>21<br /> </td> <td>22<br /> </td> <td>23<br /> </td> <td>24<br /> </td> </tr> <tr> <td>Mode 1<br /> </td> <td>1-note<br /> </td> <td><strong>do</strong><br /> </td> <td><strong>do</strong><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>Mode 2<br /> </td> <td>2-note<br /> </td> <td><br /> </td> <td><strong>do</strong><br /> </td> <td><strong>sol</strong><br /> </td> <td><strong>do</strong><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>Mode 3<br /> </td> <td>3-note<br /> </td> <td><br /> </td> <td><br /> </td> <td><strong>sol</strong><br /> </td> <td><strong>do</strong><br /> </td> <td><strong>mi</strong><br /> </td> <td><strong>sol</strong><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>Mode 4<br /> </td> <td>4-note<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><strong>do</strong><br /> </td> <td><strong>mi</strong><br /> </td> <td><strong>sol</strong><br /> </td> <td><strong>ta</strong><br /> </td> <td><strong>do</strong><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>Mode 5<br /> </td> <td>5-note<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><strong>mi</strong><br /> </td> <td><strong>sol</strong><br /> </td> <td><strong>ta</strong><br /> </td> <td><strong>do</strong><br /> </td> <td><strong>re</strong><br /> </td> <td><strong>mi</strong><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>Mode 6<br /> </td> <td>6-note<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><strong>sol</strong><br /> </td> <td><strong>ta</strong><br /> </td> <td><strong>do</strong><br /> </td> <td><strong>re</strong><br /> </td> <td><strong>mi</strong><br /> </td> <td><strong>fu</strong><br /> </td> <td><strong>sol</strong><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>Mode 7<br /> </td> <td>7-note<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><strong>ta</strong><br /> </td> <td><strong>do</strong><br /> </td> <td><strong>re</strong><br /> </td> <td><strong>mi</strong><br /> </td> <td><strong>fu</strong><br /> </td> <td><strong>sol</strong><br /> </td> <td><strong>lu</strong><br /> </td> <td><strong>ta</strong><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>Mode 8<br /> </td> <td>8-note<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><strong>do</strong><br /> </td> <td><strong>re</strong><br /> </td> <td><strong>mi</strong><br /> </td> <td><strong>fu</strong><br /> </td> <td><strong>sol</strong><br /> </td> <td><strong>lu</strong><br /> </td> <td><strong>ta</strong><br /> </td> <td><strong>ti</strong><br /> </td> <td><strong>do</strong><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>Mode 9<br /> </td> <td>9-note<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><strong>re</strong><br /> </td> <td><strong>mi</strong><br /> </td> <td><strong>fu</strong><br /> </td> <td><strong>sol</strong><br /> </td> <td><strong>lu</strong><br /> </td> <td><strong>ta</strong><br /> </td> <td><strong>ti</strong><br /> </td> <td><strong>do</strong><br /> </td> <td><strong>ra</strong><br /> </td> <td><strong>re</strong><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>Mode 10<br /> </td> <td>10-note<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><strong>mi</strong><br /> </td> <td><strong>fu</strong><br /> </td> <td><strong>sol</strong><br /> </td> <td><strong>lu</strong><br /> </td> <td><strong>ta</strong><br /> </td> <td><strong>ti</strong><br /> </td> <td><strong>do</strong><br /> </td> <td><strong>ra</strong><br /> </td> <td><strong>re</strong><br /> </td> <td><strong>me</strong><br /> </td> <td><strong>mi</strong><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>Mode 11<br /> </td> <td>11-note<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><strong>fu</strong><br /> </td> <td><strong>sol</strong><br /> </td> <td><strong>lu</strong><br /> </td> <td><strong>ta</strong><br /> </td> <td><strong>ti</strong><br /> </td> <td><strong>do</strong><br /> </td> <td><strong>ra</strong><br /> </td> <td><strong>re</strong><br /> </td> <td><strong>me</strong><br /> </td> <td><strong>mi</strong><br /> </td> <td><strong>fe</strong><br /> </td> <td><strong>fu</strong><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>Mode 12<br /> </td> <td>12-note<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><strong>sol</strong><br /> </td> <td><strong>lu</strong><br /> </td> <td><strong>ta</strong><br /> </td> <td><strong>ti</strong><br /> </td> <td><strong>do</strong><br /> </td> <td><strong>ra</strong><br /> </td> <td><strong>re</strong><br /> </td> <td><strong>me</strong><br /> </td> <td><strong>mi</strong><br /> </td> <td><strong>fe</strong><br /> </td> <td><strong>fu</strong><br /> </td> <td><strong>su</strong><br /> </td> <td><strong>sol</strong><br /> </td> </tr> </table> <br /> <!-- ws:start:WikiTextHeadingRule:6:<h2> --><h2 id="toc3"><a name="x-Next Steps"></a><!-- ws:end:WikiTextHeadingRule:6 -->Next Steps</h2> <br /> Here are some next steps:<br /> <ul><li>Go beyond the 24th overtone (eg. overtones 16-32 or higher).</li><li>Experiment with using different pitches as the "tonic" of the scale (eg. <strong>sol lu ta do re mi fu sol</strong>, which could be taken as the 7-note scale starting on <strong>sol</strong>).</li><li>Take subsets of larger scales, which are not strict adjacent overtone scales (eg. <strong>do re fe sol ta do</strong>).</li><li>Learn the inversions of these scales, which would be <strong>undertone</strong> scales. (Undertone scales would have smaller steps at the bottom of the scale, which would get larger as one ascends.)</li><li>Borrow overtones & undertones from the overtones & undertones of the fundamental -- this process can produce rich fields of interlocking harmonic series, and is often the sort of thing that composers do when they're composing in just intonation. Harry Partch's "Monophonic Fabric," which consists of 43 unequal tones per octave, is one famous example.</li></ul></body></html>