145edo: Difference between revisions

Regular temperament properties: extend to the 23-limit
mNo edit summary
 
Line 3: Line 3:


== Theory ==
== Theory ==
{{Nowrap| 145 {{=}} 5 × 29 }}, and 145edo shares the same perfect fifth with [[29edo]]. It is generally a sharp-tending system, with [[prime harmonic]]s 3 to 23 all tuned sharp except for [[7/1|7]], which is slightly flat. It is [[consistent]] to the [[11-odd-limit]], or the no-13 no-15 [[23-odd-limit]], with [[13/7]], [[15/8]] and their [[octave complement]]s being the only intervals going over the line.  
{{Nowrap| 145 {{=}} 5 × 29 }}, and 145edo shares the same perfect fifth with [[29edo]]. It is generally a sharp-tending system, with [[prime harmonic]]s 3 to 23 all tuned sharp except for [[7/1|7]], which is slightly flat. It is [[consistent]] to the [[11-odd-limit]], or the no-13 no-15 [[23-odd-limit]], with [[13/7]], [[15/14]], [[15/8]] and their [[octave complement]]s being the only intervals going over the line.  


As an equal temperament, 145et [[tempering out|tempers out]] [[1600000/1594323]] in the [[5-limit]]; [[4375/4374]] and [[5120/5103]] in the [[7-limit]]; [[441/440]] and [[896/891]] in the [[11-limit]]; [[196/195]], [[352/351]], [[364/363]], [[676/675]], [[847/845]], and [[1001/1000]] in the [[13-limit]]; [[595/594]] in the [[17-limit]]; [[343/342]] and [[476/475]] in the [[19-limit]].  
As an equal temperament, 145et [[tempering out|tempers out]] [[1600000/1594323]] in the [[5-limit]]; [[4375/4374]] and [[5120/5103]] in the [[7-limit]]; [[441/440]] and [[896/891]] in the [[11-limit]]; [[196/195]], [[352/351]], [[364/363]], [[676/675]], [[847/845]], and [[1001/1000]] in the [[13-limit]]; [[595/594]] in the [[17-limit]]; [[343/342]] and [[476/475]] in the [[19-limit]].