User:BudjarnLambeth/Sandbox2: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
BudjarnLambeth (talk | contribs)
mNo edit summary
BudjarnLambeth (talk | contribs)
Line 1: Line 1:
= Title1 =
= Title1 =
== Octave stretch or compression ==
== Octave stretch or compression ==
58edo's approximations of harmonics 3, 5, 7, 11, and 13 can all be improved if slightly [[stretched and compressed tuning|compressing the octave]] is acceptable, using tunings such as [[92edt]] or [[150ed6]].
14edo benefits from [[octave stretch]] as harmonics 3, 7, and 11 are all tuned flat. [[22edt]], [[ed6|36ed6]] and [[42zpi]] are among the possible choices.


What follows is a comparison of stretched- and compressed-octave 58edo tunings.
What follows is a comparison of stretched- and compressed-octave 14edo tunings.


; [[zpi|288zpi]]
; 14edo
* Step size: 20.736{{c}}, octave size: 1202.69{{c}}
* Step size: 85.714{{c}}, octave size: 1200.0{{c}}  
Stretching the octave of 58edo by around 2.5{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 288zpi does this.
Pure-octaves 14edo approximates all harmonics up to 16 within NNN{{c}}.
{{Harmonics in cet|20.736|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 288zpi}}
{{Harmonics in equal|14|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 14edo}}
{{Harmonics in cet|20.736|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 288zpi (continued)}}
{{Harmonics in equal|14|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 14edo (continued)}}


; 58edo
; [[WE|14et, 13-limit WE tuning]]
* Step size: 20.690{{c}}, octave size: 1200.00{{c}}  
* Step size: 85.759{{c}}, octave size: NNN{{c}}
Pure-octaves 58edo approximates all harmonics up to 16 within NNN{{c}}.
Stretching the octave of 14edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its 13-limit WE tuning and 13-limit [[TE]] tuning both do this.
{{Harmonics in equal|58|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 58edo}}
{{Harmonics in cet|85.759|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 14et, 13-limit WE tuning}}
{{Harmonics in equal|58|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 58edo (continued)}}
{{Harmonics in cet|85.759|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 14et, 13-limit WE tuning (continued)}}


; [[150ed6]]  
; [[WE|14et, 11-limit WE tuning]]  
* Step size: 20.680{{c}}, octave size: 1199.42{{c}}
* Step size: 85.842{{c}}, octave size: NNN{{c}}
Compressing the octave of 58edo by around half a cent results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 150ed6 does this.
Stretching the octave of 14edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its 11-limit WE tuning and 11-limit [[TE]] tuning both do this.
{{Harmonics in equal|150|6|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 150ed6}}
{{Harmonics in cet|85.842|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 14et, 11-limit WE tuning}}
{{Harmonics in equal|150|6|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 150ed6 (continued)}}
{{Harmonics in cet|85.842|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 14et, 11-limit WE tuning (continued)}}


; [[92edt]]  
; [[zpi|42zpi]]  
* Step size: 20.673{{c}}, octave size: 1199.06{{c}}
* Step size: 86.329{{c}}, octave size: NNN{{c}}
Compressing the octave of 58edo by around 1{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 92edt does this.
Stretching the octave of 14edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 42zpi does this.
{{Harmonics in equal|92|3|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 92edt}}
{{Harmonics in cet|86.329|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 42zpi}}
{{Harmonics in equal|92|3|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 92edt (continued)}}
{{Harmonics in cet|86.329|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 42zpi (continued)}}


; [[zpi|289zpi]] / [[WE|58et, 7-limit WE tuning]]  
; [[36ed6]]  
* Step size: 20.666{{c}}, octave size: 1198.63{{c}}
* Step size: NNN{{c}}, octave size: NNN{{c}}
Compressing the octave of 58edo by just under 1.5{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its 7-limit WE tuning and 7-limit [[TE]] tuning both do this. The tuning 289zpi also does this, its octave differing from 7-limit WE by only 0.06{{c}}.  
Stretching the octave of 14edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 36ed6 does this.
{{Harmonics in cet|20.666|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 289zpi}}
{{Harmonics in equal|36|6|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 36ed6}}
{{Harmonics in cet|20.666|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 289zpi (continued)}}
{{Harmonics in equal|36|6|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 36ed6 (continued)}}


; [[WE|58et, 13-limit WE tuning]]  
; [[22edt]]  
* Step size: 20.663{{c}}, octave size: 1198.45{{c}}
* Step size: NNN{{c}}, octave size: NNN{{c}}
Compressing the octave of 58edo by just over 1.5{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its 13-limit WE tuning and 13-limit [[TE]] tuning both do this.
Stretching the octave of 14edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 22edt does this.
{{Harmonics in cet|20.663|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 58et, 13-limit WE tuning}}
{{Harmonics in equal|22|3|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}}
{{Harmonics in cet|20.663|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 58et, 13-limit WE tuning (continued)}}
{{Harmonics in equal|22|3|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 22edt (continued)}}


= Title2 =
= Title2 =

Revision as of 00:19, 28 August 2025

Title1

Octave stretch or compression

14edo benefits from octave stretch as harmonics 3, 7, and 11 are all tuned flat. 22edt, 36ed6 and 42zpi are among the possible choices.

What follows is a comparison of stretched- and compressed-octave 14edo tunings.

14edo
  • Step size: 85.714 ¢, octave size: 1200.0 ¢

Pure-octaves 14edo approximates all harmonics up to 16 within NNN ¢.

Approximation of harmonics in 14edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +0.0 -16.2 +0.0 +42.3 -16.2 -26.0 +0.0 -32.5 +42.3 -37.0 -16.2
Relative (%) +0.0 -18.9 +0.0 +49.3 -18.9 -30.3 +0.0 -37.9 +49.3 -43.2 -18.9
Steps
(reduced)
14
(0)
22
(8)
28
(0)
33
(5)
36
(8)
39
(11)
42
(0)
44
(2)
47
(5)
48
(6)
50
(8)
Approximation of harmonics in 14edo (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) +16.6 -26.0 +26.0 +0.0 -19.2 -32.5 -40.4 +42.3 -42.2 -37.0 -28.3 -16.2
Relative (%) +19.4 -30.3 +30.4 +0.0 -22.4 -37.9 -47.1 +49.3 -49.2 -43.2 -33.0 -18.9
Steps
(reduced)
52
(10)
53
(11)
55
(13)
56
(0)
57
(1)
58
(2)
59
(3)
61
(5)
61
(5)
62
(6)
63
(7)
64
(8)
14et, 13-limit WE tuning
  • Step size: 85.759 ¢, octave size: NNN ¢

Stretching the octave of 14edo by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. Its 13-limit WE tuning and 13-limit TE tuning both do this.

Approximation of harmonics in 14et, 13-limit WE tuning
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +0.6 -15.3 +1.3 -42.0 -14.6 -24.2 +1.9 -30.5 -41.4 -34.9 -14.0
Relative (%) +0.7 -17.8 +1.5 -49.0 -17.1 -28.2 +2.2 -35.6 -48.3 -40.7 -16.3
Step 14 22 28 32 36 39 42 44 46 48 50
Approximation of harmonics in 14et, 13-limit WE tuning (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) +18.9 -23.6 +28.5 +2.5 -16.7 -29.9 -37.7 -40.8 -39.5 -34.3 -25.5 -13.4
Relative (%) +22.1 -27.5 +33.2 +2.9 -19.5 -34.9 -44.0 -47.5 -46.0 -39.9 -29.7 -15.6
Step 52 53 55 56 57 58 59 60 61 62 63 64
14et, 11-limit WE tuning
  • Step size: 85.842 ¢, octave size: NNN ¢

Stretching the octave of 14edo by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. Its 11-limit WE tuning and 11-limit TE tuning both do this.

Approximation of harmonics in 14et, 11-limit WE tuning
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +1.8 -13.4 +3.6 -39.4 -11.6 -21.0 +5.4 -26.9 -37.6 -30.9 -9.9
Relative (%) +2.1 -15.6 +4.2 -45.9 -13.6 -24.4 +6.2 -31.3 -43.8 -36.0 -11.5
Step 14 22 28 32 36 39 42 44 46 48 50
Approximation of harmonics in 14et, 11-limit WE tuning (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) +23.3 -19.2 +33.0 +7.2 -12.0 -25.1 -32.8 -35.8 -34.4 -29.1 -20.2 -8.1
Relative (%) +27.1 -22.4 +38.5 +8.3 -13.9 -29.2 -38.3 -41.7 -40.1 -33.9 -23.6 -9.4
Step 52 53 55 56 57 58 59 60 61 62 63 64
42zpi
  • Step size: 86.329 ¢, octave size: NNN ¢

Stretching the octave of 14edo by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning 42zpi does this.

Approximation of harmonics in 42zpi
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +8.6 -2.7 +17.2 -23.8 +5.9 -2.0 +25.8 -5.4 -15.2 -7.5 +14.5
Relative (%) +10.0 -3.1 +19.9 -27.6 +6.8 -2.3 +29.9 -6.3 -17.6 -8.7 +16.8
Step 14 22 28 32 36 39 42 44 46 48 50
Approximation of harmonics in 42zpi (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) -37.7 +6.6 -26.5 +34.4 +15.8 +3.2 -4.1 -6.6 -4.7 +1.1 +10.5 +23.1
Relative (%) -43.7 +7.7 -30.7 +39.9 +18.3 +3.7 -4.8 -7.6 -5.5 +1.3 +12.1 +26.8
Step 51 53 54 56 57 58 59 60 61 62 63 64
36ed6
  • Step size: NNN ¢, octave size: NNN ¢

Stretching the octave of 14edo by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning 36ed6 does this.

Approximation of harmonics in 36ed6
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +6.3 -6.3 +12.6 -29.0 +0.0 -8.4 +18.9 -12.6 -22.7 -15.4 +6.3
Relative (%) +7.3 -7.3 +14.7 -33.7 +0.0 -9.7 +22.0 -14.7 -26.3 -17.8 +7.3
Steps
(reduced)
14
(14)
22
(22)
28
(28)
32
(32)
36
(0)
39
(3)
42
(6)
44
(8)
46
(10)
48
(12)
50
(14)
Approximation of harmonics in 36ed6 (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) +40.1 -2.1 -35.3 +25.3 +6.5 -6.3 -13.8 -16.4 -14.7 -9.1 +0.1 +12.6
Relative (%) +46.5 -2.4 -41.0 +29.3 +7.5 -7.3 -16.0 -19.0 -17.0 -10.5 +0.2 +14.7
Steps
(reduced)
52
(16)
53
(17)
54
(18)
56
(20)
57
(21)
58
(22)
59
(23)
60
(24)
61
(25)
62
(26)
63
(27)
64
(28)
22edt
  • Step size: NNN ¢, octave size: NNN ¢

Stretching the octave of 14edo by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning 22edt does this.

Approximation of harmonics in EDONOI
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +10.3 +0.0 +20.7 -19.8 +10.3 +2.8 +31.0 +0.0 -9.5 -1.6 +20.7
Relative (%) +12.0 +0.0 +23.9 -22.9 +12.0 +3.3 +35.9 +0.0 -11.0 -1.8 +23.9
Steps
(reduced)
14
(14)
22
(0)
28
(6)
32
(10)
36
(14)
39
(17)
42
(20)
44
(0)
46
(2)
48
(4)
50
(6)
Approximation of harmonics in 22edt (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) -31.5 +13.2 -19.8 +41.3 +22.8 +10.3 +3.2 +0.8 +2.8 +8.7 +18.2 +31.0
Relative (%) -36.4 +15.2 -22.9 +47.8 +26.4 +12.0 +3.7 +1.0 +3.3 +10.1 +21.1 +35.9
Steps
(reduced)
51
(7)
53
(9)
54
(10)
56
(12)
57
(13)
58
(14)
59
(15)
60
(16)
61
(17)
62
(18)
63
(19)
64
(20)

Title2

Possible tunings to be used on each page

You can remove some of these or add more that aren't listed here; this section is pretty much just brainstorming.

(Used https://x31eq.com/temper-pyscript/net.html, used WE instead of TE cause it kept defaulting to WE and I kept not remembering to switch it)

High-priority

13edo

  • Main: "13edo and optimal octave stretching"
  • 2.5.11.13 WE (92.483c)
  • 2.5.7.13 WE (92.804c)
  • 2.3 WE (91.405c) (good for opposite 7 mapping)
  • 38zpi (92.531c)

14edo

  • 22edt
  • 36ed6
  • 11-limit WE (85.842c)
  • 13-limit WE (85.759c)
  • 42zpi (86.329c)

16edo

  • 25edt
  • 41ed6
  • 57ed12
  • 2.5.7.13 WE (75.105c)
  • 13-limit WE (75.315c)
  • 15zpi (75.262c)

99edo

  • 157edt
  • 256ed6
  • 7-limit WE (12.117c)
  • 13-limit WE (12.123c)
  • 567zpi (12.138c)
  • 568zpi (12.115c)

23edo (narrow down edonoi & ZPIs)

  • Main: "23edo and octave stretching"
  • 36edt
  • 59ed6
  • 60ed6
  • 68ed8
  • 11ed7/5
  • 1ed33/32
  • 2.3.5.13 WE (52.447c)
  • 2.7.11 WE (51.962c)
  • 13-limit WE (52.237c)
  • 83zpi (53.105c)
  • 84zpi (52.615c)
  • 85zpi (52.114c)
  • 86zpi (51.653c)
  • 87zpi (51.201c)

60edo (narrow down edonoi & ZPIs)

  • 95edt
  • 139ed5
  • 155ed6
  • 208ed11
  • 255ed19
  • 272ed23 (great for catnip temperament)
  • 13-limit WE (20.013c)
  • 299zpi (20.128c)
  • 300zpi (20.093c)
  • 301zpi (20.027c)
  • 302zpi (19.962c)
  • 303zpi (19.913c)
  • 304zpi (19.869c)
Medium priority

32edo (narrow down ZPIs)

  • 90ed7
  • 51edt
  • 75ed5
  • 1ed46/45
  • 11-limit WE (37.453c)
  • 13-limit WE (37.481c)
  • 131zpi (37.862c)
  • 132zpi (37.662c)
  • 133zpi (37.418c)
  • 134zpi (37.176c)

33edo (narrow down edonoi)

  • 76ed5
  • 92ed7
  • 52edt
  • 1ed47/46
  • 114ed11
  • 122ed13
  • 93ed7
  • 23edPhi
  • 77ed5
  • 123ed13
  • 115ed11
  • 11-limit WE (36.349c)
  • 13-limit WE (36.357c)
  • 137zpi (36.628c)
  • 138zpi (36.394c)
  • 139zpi (36.179c)

39edo

  • 62edt
  • 101ed6
  • 18ed11/8
  • 2.3.5.11 WE (30.703c)
  • 2.3.7.11.13 WE (30.787c)
  • 13-limit WE (30.757c)
  • 171zpi (30.973c)
  • 172zpi (30.836c)
  • 173zpi (30.672c)

42edo

  • 42ed257/128 (replace w something similar but simpler)
  • AS123/121 (1ed123/121)
  • 11ed6/5
  • 34ed7/4
  • 7-limit WE (28.484c)
  • 13-limit WE (28.534c)
  • 189zpi (28.689c)
  • 190zpi (28.572c)
  • 191zpi (28.444c)

45edo

  • 126ed7
  • 13ed11/9
  • 7-limit WE (26.745c)
  • 13-limit WE (26.695c)
  • 207zpi (26.762)
  • 208zpi (26.646)
  • 209zpi (26.550)

54edo

  • 86edt
  • 126ed5
  • 152ed7
  • 38ed5/3
  • 40ed5/3
  • 2.3.7.11.13 WE (22.180c)
  • 13-limit WE (22.198c)
  • 262zpi (22.313c)
  • 263zpi (22.243c)
  • 264zpi (22.175c)

59edo (narrow down ZPIs)

  • 93edt
  • 166ed7
  • 203ed11
  • 7-limit WE (20.301c)
  • 11-limit WE (20.310c)
  • 13-limit WE (20.320c)
  • 293zpi (20.454c)
  • 294zpi (20.399c)
  • 295zpi (20.342c)
  • 296zpi (20.282c)
  • 297zpi (20.229c)

64edo (narrow down ZPIs)

  • 149ed5
  • 180ed7
  • 222ed11
  • 47ed5/3
  • 11-limit WE (18.755c)
  • 13-limit WE (18.752c)
  • 325zpi (18.868c)
  • 326zpi (18.816c)
  • 327zpi (18.767c)
  • 328zpi (18.721c)
  • 329zpi (18.672c)
  • 330zpi (18.630c)

103edo (narrow down edonoi, choose ZPIS)

  • 163edt
  • 239ed5
  • 289ed7
  • 356ed11
  • 381ed13
  • 421ed17
  • 466ed23
  • 13-limit WE (11.658c)
  • Best nearby ZPI(s)

118edo (choose ZPIS)

  • 187edt
  • 69edf
  • 13-limit WE (10.171c)
  • Best nearby ZPI(s)

152edo (choose ZPIS)

  • 241edt
  • 13-limit WE (7.894c)
  • Best nearby ZPI(s)
Low priority

111edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

125edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

145edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

159edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

166edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

182edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

198edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

212edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

243edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

247edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)
Optional

25edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

26edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

29edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

30edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

34edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

35edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

36edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

37edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

5edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

6edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

9edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

10edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

11edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

15edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

18edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

48edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

20edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

24edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

28edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)