212edo: Difference between revisions

m Cleanup
 
Line 7: Line 7:
It [[tempering out|tempers out]] the same commas ([[15625/15552]], [[32805/32768]], [[amity comma|1600000/1594323]], etc.) as 53edo in the [[5-limit]]. In the [[7-limit]], it tempers out 2401/2400 ([[breedsma]]), 390625/388962 ([[dimcomp comma]]), and 4802000/4782969 ([[canousma]]). In the [[11-limit]], [[385/384]], [[1375/1372]], [[6250/6237]], [[9801/9800]], and [[14641/14580]]; in the [[13-limit]], [[325/324]], [[625/624]], [[676/675]], [[1001/1000]], [[1716/1715]], [[2080/2079]], and [[10648/10647]].  
It [[tempering out|tempers out]] the same commas ([[15625/15552]], [[32805/32768]], [[amity comma|1600000/1594323]], etc.) as 53edo in the [[5-limit]]. In the [[7-limit]], it tempers out 2401/2400 ([[breedsma]]), 390625/388962 ([[dimcomp comma]]), and 4802000/4782969 ([[canousma]]). In the [[11-limit]], [[385/384]], [[1375/1372]], [[6250/6237]], [[9801/9800]], and [[14641/14580]]; in the [[13-limit]], [[325/324]], [[625/624]], [[676/675]], [[1001/1000]], [[1716/1715]], [[2080/2079]], and [[10648/10647]].  


It is the [[optimal patent val]] for 7- and 13-limit [[quadritikleismic]] temperament, the 7-limit [[Kleismic rank three family #Rank-3 kleismic|rank-3 kleismic]] temperament, and the 13-limit rank-3 [[agni]] temperament. It enables [[marveltwin chords]], [[keenanismic chords]], [[sinbadmic chords]], and [[lambeth chords]] in the 13-odd-limit in addition to [[island chords]] in the 15-odd-limit.  
It is the [[optimal patent val]] for 7- and 13-limit [[quadritikleismic]] temperament, the 7-limit [[rank-3 kleismic]] temperament, and the 13-limit rank-3 [[agni]] temperament. It enables [[marveltwin chords]], [[keenanismic chords]], [[sinbadmic chords]], and [[lambeth chords]] in the 13-odd-limit in addition to [[island chords]] in the 15-odd-limit.  


To the 13-limit we may add the [[prime harmonic|prime]] [[23/1|23]] without introducing too much extra error, tempering out [[484/483]] and [[507/506]]. The 212gh val shows some potential if the full [[23-limit]] is desired, where it notably tempers out [[289/288]] and [[361/360]]. Also, using 212bb val (where fifth is flattened by single step, approximately 1/4 comma) gives a tuning almost identical to the POTE tuning for 5-limit meantone. This is related to the fact that 212edo splits steps of 53edo, which are mapped to a syntonic comma, in four.
To the 13-limit we may add the [[prime harmonic|prime]] [[23/1|23]] without introducing too much extra error, tempering out [[484/483]] and [[507/506]]. The 212gh val shows some potential if the full [[23-limit]] is desired, where it notably tempers out [[289/288]] and [[361/360]]. Also, using 212bb val (where fifth is flattened by single step, approximately 1/4 comma) gives a tuning almost identical to the POTE tuning for 5-limit meantone. This is related to the fact that 212edo splits steps of 53edo, which are mapped to a syntonic comma, in four.
Line 28: Line 28:
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br />8ve stretch (¢)
! rowspan="2" | Optimal<br>8ve stretch (¢)
! colspan="2" | Tuning error
! colspan="2" | Tuning error
|-
|-
Line 84: Line 84:
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator
|-
|-
! Periods<br />per 8ve
! Periods<br>per 8ve
! Generator*
! Generator*
! Cents*
! Cents*
! Associated<br />ratio*
! Associated<br>ratio*
! Temperaments
! Temperaments
|-
|-
Line 133: Line 133:
|-
|-
| 2
| 2
| 97\212<br />(9\212)
| 97\212<br>(9\212)
| 549.06<br />(50.94)
| 549.06<br>(50.94)
| 11/8<br />(36/35)
| 11/8<br>(36/35)
| [[Kleischismic]]
| [[Kleischismic]]
|-
|-
| 4
| 4
| 56\212<br />(3\212)
| 56\212<br>(3\212)
| 316.98<br />(16.98)
| 316.98<br>(16.98)
| 6/5<br />(126/125)
| 6/5<br>(126/125)
| [[Quadritikleismic]]
| [[Quadritikleismic]]
|-
|-
| 4
| 4
| 88\212<br />(18\212)
| 88\212<br>(18\212)
| 498.11<br />(101.89)
| 498.11<br>(101.89)
| 4/3<br />(35/33)
| 4/3<br>(35/33)
| [[Quadrant]]
| [[Quadrant]]
|-
|-
| 53
| 53
| 41\212<br />(1\212)
| 41\212<br>(1\212)
| 232.08<br />(5.66)
| 232.08<br>(5.66)
| 8/7<br />(225/224)
| 8/7<br>(225/224)
| [[Schismerc]] / [[cartography]]
| [[Schismerc]] / [[cartography]]
|}
|}
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct
<nowiki/>* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[normal forms|minimal form]] in parentheses if distinct


== Music ==
== Music ==