User:BudjarnLambeth/Sandbox2: Difference between revisions
Line 7: | Line 7: | ||
= Title2 = | = Title2 = | ||
== Octave stretch or compression == | == Octave stretch or compression == | ||
What follows is a comparison of stretched- and compressed-octave EDONAME tunings. | |||
; [[zpi|ZPINAME]] | |||
* Step size: NNN{{c}}, octave size: NNN{{c}} | |||
_ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning ZPINAME does this. | |||
{{Harmonics in cet|100|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in ZPINAME}} | |||
{{Harmonics in cet|100|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in ZPINAME (continued)}} | |||
; [[EDONOI]] | |||
* Step size: NNN{{c}}, octave size: NNN{{c}} | |||
_ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this. | |||
{{Harmonics in equal|12|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}} | |||
{{Harmonics in equal|12|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONOI (continued)}} | |||
; [[WE|ETNAME, SUBGROUP WE tuning]] | |||
* Step size: NNN{{c}}, octave size: NNN{{c}} | |||
_ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its SUBGROUP WE tuning and SUBGROUP [[TE]] tuning both do this. | |||
{{Harmonics in cet|100|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in ETNAME, SUBGROUP WE tuning}} | |||
{{Harmonics in cet|100|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in ETNAME, SUBGROUP WE tuning (continued)}} | |||
; | ; EDONAME | ||
* | * Step size: NNN{{c}}, octave size: NNN{{c}} | ||
Pure-octaves EDONAME approximates all harmonics up to 16 within NNN{{c}}. | |||
{{Harmonics in equal|12|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONAME}} | |||
{{Harmonics in equal|12|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONAME (continued)}} | |||
{{Harmonics in equal| | |||
{{Harmonics in equal| | |||
; | ; [[WE|ETNAME, SUBGROUP WE tuning]] | ||
* Step size: | * Step size: NNN{{c}}, octave size: NNN{{c}} | ||
_ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its SUBGROUP WE tuning and SUBGROUP [[TE]] tuning both do this. | |||
{{Harmonics in | {{Harmonics in cet|100|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in ETNAME, SUBGROUP WE tuning}} | ||
{{Harmonics in | {{Harmonics in cet|100|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in ETNAME, SUBGROUP WE tuning (continued)}} | ||
; [[ | ; [[EDONOI]] | ||
* Step size: | * Step size: NNN{{c}}, octave size: NNN{{c}} | ||
_ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this. | |||
{{Harmonics in | {{Harmonics in equal|12|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}} | ||
{{Harmonics in | {{Harmonics in equal|12|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONOI (continued)}} | ||
; [[ | ; [[zpi|ZPINAME]] | ||
* Step size: | * Step size: NNN{{c}}, octave size: NNN{{c}} | ||
_ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning ZPINAME does this. | |||
{{Harmonics in cet| | {{Harmonics in cet|100|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in ZPINAME}} | ||
{{Harmonics in cet| | {{Harmonics in cet|100|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in ZPINAME (continued)}} |
Revision as of 22:34, 26 August 2025
Title1
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -4.1 | -8.5 | -8.2 | +4.1 | -12.6 | +19.5 | -12.3 | -16.9 | +0.0 | +34.3 | -16.7 |
Relative (%) | -4.1 | -8.5 | -8.2 | +4.1 | -12.6 | +19.6 | -12.4 | -17.0 | +0.0 | +34.4 | -16.7 | |
Steps (reduced) |
12 (12) |
19 (19) |
24 (24) |
28 (28) |
31 (31) |
34 (34) |
36 (36) |
38 (38) |
40 (0) |
42 (2) |
43 (3) |
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +3.4 | +3.4 | +6.7 | +21.5 | +6.7 | +40.7 | +10.1 | +6.7 | +24.9 | -39.9 | +10.1 |
Relative (%) | +3.3 | +3.3 | +6.7 | +21.4 | +6.7 | +40.6 | +10.0 | +6.7 | +24.8 | -39.8 | +10.0 | |
Steps (reduced) |
12 (5) |
19 (5) |
24 (3) |
28 (0) |
31 (3) |
34 (6) |
36 (1) |
38 (3) |
40 (5) |
41 (6) |
43 (1) |
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +1.2 | +0.0 | +2.5 | +16.6 | +1.2 | +34.7 | +3.7 | +0.0 | +17.8 | -47.1 | +2.5 |
Relative (%) | +1.2 | +0.0 | +2.5 | +16.6 | +1.2 | +34.6 | +3.7 | +0.0 | +17.8 | -47.1 | +2.5 | |
Steps (reduced) |
12 (12) |
19 (0) |
24 (5) |
28 (9) |
31 (12) |
34 (15) |
36 (17) |
38 (0) |
40 (2) |
41 (3) |
43 (5) |
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.8 | -0.8 | +1.5 | +15.5 | +0.0 | +33.3 | +2.3 | -1.5 | +16.2 | -48.7 | +0.8 |
Relative (%) | +0.8 | -0.8 | +1.5 | +15.4 | +0.0 | +33.3 | +2.3 | -1.5 | +16.2 | -48.7 | +0.8 | |
Steps (reduced) |
12 (12) |
19 (19) |
24 (24) |
28 (28) |
31 (0) |
34 (3) |
36 (5) |
38 (7) |
40 (9) |
41 (10) |
43 (12) |
Title2
Octave stretch or compression
What follows is a comparison of stretched- and compressed-octave EDONAME tunings.
- Step size: NNN ¢, octave size: NNN ¢
_ing the octave of EDONAME by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning ZPINAME does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | -2.0 | +0.0 | +13.7 | -2.0 | +31.2 | +0.0 | -3.9 | +13.7 | +48.7 | -2.0 |
Relative (%) | +0.0 | -2.0 | +0.0 | +13.7 | -2.0 | +31.2 | +0.0 | -3.9 | +13.7 | +48.7 | -2.0 | |
Step | 12 | 19 | 24 | 28 | 31 | 34 | 36 | 38 | 40 | 42 | 43 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -40.5 | +31.2 | +11.7 | +0.0 | -5.0 | -3.9 | +2.5 | +13.7 | +29.2 | +48.7 | -28.3 | -2.0 |
Relative (%) | -40.5 | +31.2 | +11.7 | +0.0 | -5.0 | -3.9 | +2.5 | +13.7 | +29.2 | +48.7 | -28.3 | -2.0 | |
Step | 44 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 54 | 55 |
- Step size: NNN ¢, octave size: NNN ¢
_ing the octave of EDONAME by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning EDONOI does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | -2.0 | +0.0 | +13.7 | -2.0 | +31.2 | +0.0 | -3.9 | +13.7 | +48.7 | -2.0 |
Relative (%) | +0.0 | -2.0 | +0.0 | +13.7 | -2.0 | +31.2 | +0.0 | -3.9 | +13.7 | +48.7 | -2.0 | |
Steps (reduced) |
12 (0) |
19 (7) |
24 (0) |
28 (4) |
31 (7) |
34 (10) |
36 (0) |
38 (2) |
40 (4) |
42 (6) |
43 (7) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -40.5 | +31.2 | +11.7 | +0.0 | -5.0 | -3.9 | +2.5 | +13.7 | +29.2 | +48.7 | -28.3 | -2.0 |
Relative (%) | -40.5 | +31.2 | +11.7 | +0.0 | -5.0 | -3.9 | +2.5 | +13.7 | +29.2 | +48.7 | -28.3 | -2.0 | |
Steps (reduced) |
44 (8) |
46 (10) |
47 (11) |
48 (0) |
49 (1) |
50 (2) |
51 (3) |
52 (4) |
53 (5) |
54 (6) |
54 (6) |
55 (7) |
- Step size: NNN ¢, octave size: NNN ¢
_ing the octave of EDONAME by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. Its SUBGROUP WE tuning and SUBGROUP TE tuning both do this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | -2.0 | +0.0 | +13.7 | -2.0 | +31.2 | +0.0 | -3.9 | +13.7 | +48.7 | -2.0 |
Relative (%) | +0.0 | -2.0 | +0.0 | +13.7 | -2.0 | +31.2 | +0.0 | -3.9 | +13.7 | +48.7 | -2.0 | |
Step | 12 | 19 | 24 | 28 | 31 | 34 | 36 | 38 | 40 | 42 | 43 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -40.5 | +31.2 | +11.7 | +0.0 | -5.0 | -3.9 | +2.5 | +13.7 | +29.2 | +48.7 | -28.3 | -2.0 |
Relative (%) | -40.5 | +31.2 | +11.7 | +0.0 | -5.0 | -3.9 | +2.5 | +13.7 | +29.2 | +48.7 | -28.3 | -2.0 | |
Step | 44 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 54 | 55 |
- EDONAME
- Step size: NNN ¢, octave size: NNN ¢
Pure-octaves EDONAME approximates all harmonics up to 16 within NNN ¢.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | -2.0 | +0.0 | +13.7 | -2.0 | +31.2 | +0.0 | -3.9 | +13.7 | +48.7 | -2.0 |
Relative (%) | +0.0 | -2.0 | +0.0 | +13.7 | -2.0 | +31.2 | +0.0 | -3.9 | +13.7 | +48.7 | -2.0 | |
Steps (reduced) |
12 (0) |
19 (7) |
24 (0) |
28 (4) |
31 (7) |
34 (10) |
36 (0) |
38 (2) |
40 (4) |
42 (6) |
43 (7) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -40.5 | +31.2 | +11.7 | +0.0 | -5.0 | -3.9 | +2.5 | +13.7 | +29.2 | +48.7 | -28.3 | -2.0 |
Relative (%) | -40.5 | +31.2 | +11.7 | +0.0 | -5.0 | -3.9 | +2.5 | +13.7 | +29.2 | +48.7 | -28.3 | -2.0 | |
Steps (reduced) |
44 (8) |
46 (10) |
47 (11) |
48 (0) |
49 (1) |
50 (2) |
51 (3) |
52 (4) |
53 (5) |
54 (6) |
54 (6) |
55 (7) |
- Step size: NNN ¢, octave size: NNN ¢
_ing the octave of EDONAME by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. Its SUBGROUP WE tuning and SUBGROUP TE tuning both do this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | -2.0 | +0.0 | +13.7 | -2.0 | +31.2 | +0.0 | -3.9 | +13.7 | +48.7 | -2.0 |
Relative (%) | +0.0 | -2.0 | +0.0 | +13.7 | -2.0 | +31.2 | +0.0 | -3.9 | +13.7 | +48.7 | -2.0 | |
Step | 12 | 19 | 24 | 28 | 31 | 34 | 36 | 38 | 40 | 42 | 43 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -40.5 | +31.2 | +11.7 | +0.0 | -5.0 | -3.9 | +2.5 | +13.7 | +29.2 | +48.7 | -28.3 | -2.0 |
Relative (%) | -40.5 | +31.2 | +11.7 | +0.0 | -5.0 | -3.9 | +2.5 | +13.7 | +29.2 | +48.7 | -28.3 | -2.0 | |
Step | 44 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 54 | 55 |
- Step size: NNN ¢, octave size: NNN ¢
_ing the octave of EDONAME by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning EDONOI does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | -2.0 | +0.0 | +13.7 | -2.0 | +31.2 | +0.0 | -3.9 | +13.7 | +48.7 | -2.0 |
Relative (%) | +0.0 | -2.0 | +0.0 | +13.7 | -2.0 | +31.2 | +0.0 | -3.9 | +13.7 | +48.7 | -2.0 | |
Steps (reduced) |
12 (0) |
19 (7) |
24 (0) |
28 (4) |
31 (7) |
34 (10) |
36 (0) |
38 (2) |
40 (4) |
42 (6) |
43 (7) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -40.5 | +31.2 | +11.7 | +0.0 | -5.0 | -3.9 | +2.5 | +13.7 | +29.2 | +48.7 | -28.3 | -2.0 |
Relative (%) | -40.5 | +31.2 | +11.7 | +0.0 | -5.0 | -3.9 | +2.5 | +13.7 | +29.2 | +48.7 | -28.3 | -2.0 | |
Steps (reduced) |
44 (8) |
46 (10) |
47 (11) |
48 (0) |
49 (1) |
50 (2) |
51 (3) |
52 (4) |
53 (5) |
54 (6) |
54 (6) |
55 (7) |
- Step size: NNN ¢, octave size: NNN ¢
_ing the octave of EDONAME by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning ZPINAME does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | -2.0 | +0.0 | +13.7 | -2.0 | +31.2 | +0.0 | -3.9 | +13.7 | +48.7 | -2.0 |
Relative (%) | +0.0 | -2.0 | +0.0 | +13.7 | -2.0 | +31.2 | +0.0 | -3.9 | +13.7 | +48.7 | -2.0 | |
Step | 12 | 19 | 24 | 28 | 31 | 34 | 36 | 38 | 40 | 42 | 43 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -40.5 | +31.2 | +11.7 | +0.0 | -5.0 | -3.9 | +2.5 | +13.7 | +29.2 | +48.7 | -28.3 | -2.0 |
Relative (%) | -40.5 | +31.2 | +11.7 | +0.0 | -5.0 | -3.9 | +2.5 | +13.7 | +29.2 | +48.7 | -28.3 | -2.0 | |
Step | 44 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 54 | 55 |