27edo: Difference between revisions
→Octave stretch or compression: precision. The 13-limit patent val makes no sense, removed |
→Octave stretch or compression: add 11 limit WE |
||
Line 1,142: | Line 1,142: | ||
{{Harmonics in equal|27|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 27edo}} | {{Harmonics in equal|27|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 27edo}} | ||
{{Harmonics in equal|27|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 27edo (continued)}} | {{Harmonics in equal|27|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 27edo (continued)}} | ||
; [[WE|27et, 11-limit WE tuning]] | |||
* Step size: 44.370{{c}}, octave size: 1199.1{{c}} | |||
Compressing the octave of 27edo by around 1{{c}} results in substantially improved primes 3, 5 and 7 at little cost. This approximates all harmonics up to 16 within 19.9{{c}}. Its 11-limit WE tuning and 11-limit [[TE]] tuning both do this. | |||
{{Harmonics in cet|44.375|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 27et, 11-limit WE tuning}} | |||
{{Harmonics in cet|44.375|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 27et, 11-limit WE tuning (continued)}} | |||
; [[97ed12]] | ; [[97ed12]] |