27edo: Difference between revisions

Octave stretch or compression: precision. The 13-limit patent val makes no sense, removed
BudjarnLambeth (talk | contribs)
Line 1,142: Line 1,142:
{{Harmonics in equal|27|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 27edo}}
{{Harmonics in equal|27|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 27edo}}
{{Harmonics in equal|27|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 27edo (continued)}}
{{Harmonics in equal|27|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 27edo (continued)}}
; [[WE|27et, 11-limit WE tuning]]
* Step size: 44.370{{c}}, octave size: 1199.1{{c}}
Compressing the octave of 27edo by around 1{{c}} results in substantially improved primes 3, 5 and 7 at little cost. This approximates all harmonics up to 16 within 19.9{{c}}. Its 11-limit WE tuning and 11-limit [[TE]] tuning both do this.
{{Harmonics in cet|44.375|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 27et, 11-limit WE tuning}}
{{Harmonics in cet|44.375|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 27et, 11-limit WE tuning (continued)}}


; [[97ed12]]  
; [[97ed12]]