|
|
Line 1: |
Line 1: |
| The '''equal division of 7/3''' ('''ed7/3''') is a [[tuning]] obtained by dividing the [[7/3|septimal minor tenth (7/3)]] in a certain number of [[equal]] steps.
| | #REDIRECT [[User:Moremajorthanmajor/Ed7/3]] |
| | |
| == Applications ==
| |
| Division of 7/3 into equal parts does not necessarily imply directly using this interval as an [[equivalence]]. Many, though not all, ed7/3 scales have a perceptually important [[Pseudo-octave|false octave]], with various degrees of accuracy.
| |
| | |
| The structural utility of 7/3 (or another tenth) is apparent by being the absolute widest range most generally used in popular songs{{citation needed}} (and even the range of a {{w|Dastg%C4%81h-e_M%C4%81hur|dastgah}}{{citation needed}}).
| |
| | |
| == Chords and harmonies ==
| |
| {{main|Pseudo-traditional harmonic functions of enneatonic scale_degrees}}
| |
| [[:Category:9-tone scales|Enneatonic scale]]s, especially those equivalent at 7/3, can sensibly take [[tetrad]]s as the fundamental complete sonorities of a pseudo-traditional functional harmony due to their seventh degree being as structurally important as it is. Many, though not all, of these scales have a perceptually important [[Pseudo-octave|pseudo (false) octave]], with various degrees of accuracy.
| |
| | |
| Incidentally, one way to treat 7/3 as an equivalence is the use of the 3:4:5:(7) chord as the fundamental complete sonority in a very similar way to the 4:5:6:(8) chord in [[meantone]]. Whereas in meantone it takes four [[3/2]] to get to [[5/1]], here it takes two [[28/15]] to get to [[7/2]] (tempering out the comma [[225/224]]). So, doing this yields 15-, 19-, and 34-note [[mos]] 2/1 apart. While the notes are rather farther apart, the scheme is uncannily similar to meantone. [[Joseph Ruhf]] named this scheme "macrobichromatic".
| |
| | |
| == Middletown ==
| |
| {{idiosyncratic terms}}
| |
| 7/3 provides a fairly trivial point to split the difference between the [[octave]] and the [[tritave]], which is why Ruhf has named the region of intervals between 6 and 7 degrees of [[5edo]] the "[[Middletown valley]]".
| |
| | |
| The proper [[Middletown family|Middletown temperament family]] is based on an [[enneatonic]] scale [[generator|generated]] by a third or a fifth optionally with a [[period]] of a [[Wolf interval|wolf]] fourth at most 560 [[cents]] wide) and, as is the twelfth (tritave), an alternative interval where {{w|Inversion (music) #Counterpoint|invertible counterpoint}} has classically occurred.
| |
| | |
| The branches of the Middletown family are named thus:
| |
| * 3&6: Tritetrachordal
| |
| * 4&5: Montrose (between 5\4edo and 4\3edo in particular, MOS generated by [pseudo] octaves belong to this branch)
| |
| * 2&7: Terra Rubra
| |
| | |
| The family of interlaced [[octatonic scale]]-based temperaments in the "Middletown valley" is called Vesuvius (i.e. the volcano east of Naples).
| |
| | |
| The Middlebury temperament falls in the "Middletown valley", but its enneatonic scales are "[[generator-remainder]]".
| |
| | |
| The temperaments neighboring Middletown proper are named thus:
| |
| * 5&6: Rosablanca
| |
| * 4&7: Saptimpun (10 1/2)
| |
| * 5&7: 8bittone (Old Middetown)
| |
| | |
| The [[pyrite]] tuning of [[edX]]s will turn out to divide a barely mistuned [[5/2]] of almost exactly 45\[[34edo]].
| |
| | |
| == Individual pages for ed7/3's ==
| |
| {| class="wikitable center-all"
| |
| |+ style=white-space:nowrap | 0…99
| |
| | [[0ed7/3|0]]
| |
| | [[1ed7/3|1]]
| |
| | [[2ed7/3|2]]
| |
| | [[3ed7/3|3]]
| |
| | [[4ed7/3|4]]
| |
| | [[5ed7/3|5]]
| |
| | [[6ed7/3|6]]
| |
| | [[7ed7/3|7]]
| |
| | [[8ed7/3|8]]
| |
| | [[9ed7/3|9]]
| |
| |-
| |
| | [[10ed7/3|10]]
| |
| | [[11ed7/3|11]]
| |
| | [[12ed7/3|12]]
| |
| | [[13ed7/3|13]]
| |
| | [[14ed7/3|14]]
| |
| | [[15ed7/3|15]]
| |
| | [[16ed7/3|16]]
| |
| | [[17ed7/3|17]]
| |
| | [[18ed7/3|18]]
| |
| | [[19ed7/3|19]]
| |
| |-
| |
| | [[20ed7/3|20]]
| |
| | [[21ed7/3|21]]
| |
| | [[22ed7/3|22]]
| |
| | [[23ed7/3|23]]
| |
| | [[24ed7/3|24]]
| |
| | [[25ed7/3|25]]
| |
| | [[26ed7/3|26]]
| |
| | [[27ed7/3|27]]
| |
| | [[28ed7/3|28]]
| |
| | [[29ed7/3|29]]
| |
| |-
| |
| | [[30ed7/3|30]]
| |
| | [[31ed7/3|31]]
| |
| | [[32ed7/3|32]]
| |
| | [[33ed7/3|33]]
| |
| | [[34ed7/3|34]]
| |
| | [[35ed7/3|35]]
| |
| | [[36ed7/3|36]]
| |
| | [[37ed7/3|37]]
| |
| | [[38ed7/3|38]]
| |
| | [[39ed7/3|39]]
| |
| |-
| |
| | [[40ed7/3|40]]
| |
| | [[41ed7/3|41]]
| |
| | [[42ed7/3|42]]
| |
| | [[43ed7/3|43]]
| |
| | [[44ed7/3|44]]
| |
| | [[45ed7/3|45]]
| |
| | [[46ed7/3|46]]
| |
| | [[47ed7/3|47]]
| |
| | [[48ed7/3|48]]
| |
| | [[49ed7/3|49]]
| |
| |-
| |
| | [[50ed7/3|50]]
| |
| | [[51ed7/3|51]]
| |
| | [[52ed7/3|52]]
| |
| | [[53ed7/3|53]]
| |
| | [[54ed7/3|54]]
| |
| | [[55ed7/3|55]]
| |
| | [[56ed7/3|56]]
| |
| | [[57ed7/3|57]]
| |
| | [[58ed7/3|58]]
| |
| | [[59ed7/3|59]]
| |
| |-
| |
| | [[60ed7/3|60]]
| |
| | [[61ed7/3|61]]
| |
| | [[62ed7/3|62]]
| |
| | [[63ed7/3|63]]
| |
| | [[64ed7/3|64]]
| |
| | [[65ed7/3|65]]
| |
| | [[66ed7/3|66]]
| |
| | [[67ed7/3|67]]
| |
| | [[68ed7/3|68]]
| |
| | [[69ed7/3|69]]
| |
| |-
| |
| | [[70ed7/3|70]]
| |
| | [[71ed7/3|71]]
| |
| | [[72ed7/3|72]]
| |
| | [[73ed7/3|73]]
| |
| | [[74ed7/3|74]]
| |
| | [[75ed7/3|75]]
| |
| | [[76ed7/3|76]]
| |
| | [[77ed7/3|77]]
| |
| | [[78ed7/3|78]]
| |
| | [[79ed7/3|79]]
| |
| |-
| |
| | [[80ed7/3|80]]
| |
| | [[81ed7/3|81]]
| |
| | [[82ed7/3|82]]
| |
| | [[83ed7/3|83]]
| |
| | [[84ed7/3|84]]
| |
| | [[85ed7/3|85]]
| |
| | [[86ed7/3|86]]
| |
| | [[87ed7/3|87]]
| |
| | [[88ed7/3|88]]
| |
| | [[89ed7/3|89]]
| |
| |-
| |
| | [[90ed7/3|90]]
| |
| | [[91ed7/3|91]]
| |
| | [[92ed7/3|92]]
| |
| | [[93ed7/3|93]]
| |
| | [[94ed7/3|94]]
| |
| | [[95ed7/3|95]]
| |
| | [[96ed7/3|96]]
| |
| | [[97ed7/3|97]]
| |
| | [[98ed7/3|98]]
| |
| | [[99ed7/3|99]]
| |
| |}
| |
| {| class="wikitable center-all mw-collapsible mw-collapsed"
| |
| |+ style=white-space:nowrap | 100…199
| |
| | [[100ed7/3|100]]
| |
| | [[101ed7/3|101]]
| |
| | [[102ed7/3|102]]
| |
| | [[103ed7/3|103]]
| |
| | [[104ed7/3|104]]
| |
| | [[105ed7/3|105]]
| |
| | [[106ed7/3|106]]
| |
| | [[107ed7/3|107]]
| |
| | [[108ed7/3|108]]
| |
| | [[109ed7/3|109]]
| |
| |-
| |
| | [[110ed7/3|110]]
| |
| | [[111ed7/3|111]]
| |
| | [[112ed7/3|112]]
| |
| | [[113ed7/3|113]]
| |
| | [[114ed7/3|114]]
| |
| | [[115ed7/3|115]]
| |
| | [[116ed7/3|116]]
| |
| | [[117ed7/3|117]]
| |
| | [[118ed7/3|118]]
| |
| | [[119ed7/3|119]]
| |
| |-
| |
| | [[120ed7/3|120]]
| |
| | [[121ed7/3|121]]
| |
| | [[122ed7/3|122]]
| |
| | [[123ed7/3|123]]
| |
| | [[124ed7/3|124]]
| |
| | [[125ed7/3|125]]
| |
| | [[126ed7/3|126]]
| |
| | [[127ed7/3|127]]
| |
| | [[128ed7/3|128]]
| |
| | [[129ed7/3|129]]
| |
| |-
| |
| | [[130ed7/3|130]]
| |
| | [[131ed7/3|131]]
| |
| | [[132ed7/3|132]]
| |
| | [[133ed7/3|133]]
| |
| | [[134ed7/3|134]]
| |
| | [[135ed7/3|135]]
| |
| | [[136ed7/3|136]]
| |
| | [[137ed7/3|137]]
| |
| | [[138ed7/3|138]]
| |
| | [[139ed7/3|139]]
| |
| |-
| |
| | [[140ed7/3|140]]
| |
| | [[141ed7/3|141]]
| |
| | [[142ed7/3|142]]
| |
| | [[143ed7/3|143]]
| |
| | [[144ed7/3|144]]
| |
| | [[145ed7/3|145]]
| |
| | [[146ed7/3|146]]
| |
| | [[147ed7/3|147]]
| |
| | [[148ed7/3|148]]
| |
| | [[149ed7/3|149]]
| |
| |-
| |
| | [[150ed7/3|150]]
| |
| | [[151ed7/3|151]]
| |
| | [[152ed7/3|152]]
| |
| | [[153ed7/3|153]]
| |
| | [[154ed7/3|154]]
| |
| | [[155ed7/3|155]]
| |
| | [[156ed7/3|156]]
| |
| | [[157ed7/3|157]]
| |
| | [[158ed7/3|158]]
| |
| | [[159ed7/3|159]]
| |
| |-
| |
| | [[160ed7/3|160]]
| |
| | [[161ed7/3|161]]
| |
| | [[162ed7/3|162]]
| |
| | [[163ed7/3|163]]
| |
| | [[164ed7/3|164]]
| |
| | [[165ed7/3|165]]
| |
| | [[166ed7/3|166]]
| |
| | [[167ed7/3|167]]
| |
| | [[168ed7/3|168]]
| |
| | [[169ed7/3|169]]
| |
| |-
| |
| | [[170ed7/3|170]]
| |
| | [[171ed7/3|171]]
| |
| | [[172ed7/3|172]]
| |
| | [[173ed7/3|173]]
| |
| | [[174ed7/3|174]]
| |
| | [[175ed7/3|175]]
| |
| | [[176ed7/3|176]]
| |
| | [[177ed7/3|177]]
| |
| | [[178ed7/3|178]]
| |
| | [[179ed7/3|179]]
| |
| |-
| |
| | [[180ed7/3|180]]
| |
| | [[181ed7/3|181]]
| |
| | [[182ed7/3|182]]
| |
| | [[183ed7/3|183]]
| |
| | [[184ed7/3|184]]
| |
| | [[185ed7/3|185]]
| |
| | [[186ed7/3|186]]
| |
| | [[187ed7/3|187]]
| |
| | [[188ed7/3|188]]
| |
| | [[189ed7/3|189]]
| |
| |-
| |
| | [[190ed7/3|190]]
| |
| | [[191ed7/3|191]]
| |
| | [[192ed7/3|192]]
| |
| | [[193ed7/3|193]]
| |
| | [[194ed7/3|194]]
| |
| | [[195ed7/3|195]]
| |
| | [[196ed7/3|196]]
| |
| | [[197ed7/3|197]]
| |
| | [[198ed7/3|198]]
| |
| | [[199ed7/3|199]]
| |
| |}
| |
| | |
| [[Category:Ed7/3| ]] <!-- main article -->
| |
| [[Category:Edonoi]]
| |
| [[Category:Lists of scales]]
| |
| | |
| | |
| {{todo|inline=1|review|cleanup|improve layout}}
| |