Macrotonal edonois: Difference between revisions
Jump to navigation
Jump to search
Wikispaces>Andrew_Heathwaite **Imported revision 111024307 - Original comment: ** |
Wikispaces>Andrew_Heathwaite **Imported revision 111024331 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User:Andrew_Heathwaite|Andrew_Heathwaite]] and made on <tt>2009-12-24 18: | : This revision was by author [[User:Andrew_Heathwaite|Andrew_Heathwaite]] and made on <tt>2009-12-24 18:05:24 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>111024331</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
Line 8: | Line 8: | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">EDONOI is short for "equal divisions of a non-octave interval". | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">EDONOI is short for "equal divisions of a non-octave interval". | ||
Examples include the equal-tempered [[BP|Bohlen-Pierce scale]] (a.k.a. the 13th root of 3), [[Carlos Alpha]], [[Carlos Beta]], [[Carlos Gamma]], the [[19ED3|19th root of 3]], the [[6edf|6th root of 3:2]] , [[88cET]] and the [[square root of 13 | Examples include the equal-tempered [[BP|Bohlen-Pierce scale]] (a.k.a. the 13th root of 3), [[Carlos Alpha]], [[Carlos Beta]], [[Carlos Gamma]], the [[19ED3|19th root of 3]], the [[6edf|6th root of 3:2]] , [[88cET]] and the [[square root of 13 over 10|square root of 13:10]] . | ||
Some EDONOI contain an interval close to a 2:1 that might function like a stretched or squashed octave. They can thus be considered variations on [[edo]]s. | Some EDONOI contain an interval close to a 2:1 that might function like a stretched or squashed octave. They can thus be considered variations on [[edo]]s. | ||
Line 16: | Line 16: | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>macrotonal edonois</title></head><body>EDONOI is short for &quot;equal divisions of a non-octave interval&quot;.<br /> | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>macrotonal edonois</title></head><body>EDONOI is short for &quot;equal divisions of a non-octave interval&quot;.<br /> | ||
<br /> | <br /> | ||
Examples include the equal-tempered <a class="wiki_link" href="/BP">Bohlen-Pierce scale</a> (a.k.a. the 13th root of 3), <a class="wiki_link" href="/Carlos%20Alpha">Carlos Alpha</a>, <a class="wiki_link" href="/Carlos%20Beta">Carlos Beta</a>, <a class="wiki_link" href="/Carlos%20Gamma">Carlos Gamma</a>, the <a class="wiki_link" href="/19ED3">19th root of 3</a>, the <a class="wiki_link" href="/6edf">6th root of 3:2</a> , <a class="wiki_link" href="/88cET">88cET</a> and the | Examples include the equal-tempered <a class="wiki_link" href="/BP">Bohlen-Pierce scale</a> (a.k.a. the 13th root of 3), <a class="wiki_link" href="/Carlos%20Alpha">Carlos Alpha</a>, <a class="wiki_link" href="/Carlos%20Beta">Carlos Beta</a>, <a class="wiki_link" href="/Carlos%20Gamma">Carlos Gamma</a>, the <a class="wiki_link" href="/19ED3">19th root of 3</a>, the <a class="wiki_link" href="/6edf">6th root of 3:2</a> , <a class="wiki_link" href="/88cET">88cET</a> and the <a class="wiki_link" href="/square%20root%20of%2013%20over%2010">square root of 13:10</a> .<br /> | ||
<br /> | <br /> | ||
Some EDONOI contain an interval close to a 2:1 that might function like a stretched or squashed octave. They can thus be considered variations on <a class="wiki_link" href="/edo">edo</a>s.<br /> | Some EDONOI contain an interval close to a 2:1 that might function like a stretched or squashed octave. They can thus be considered variations on <a class="wiki_link" href="/edo">edo</a>s.<br /> | ||
<br /> | <br /> | ||
Other EDONOI contain no approximation of an octave or a compound octave (at least, not for a while), and continue generating new tones as they continue upward or downward. Such scales lack a very familiar compositional <a class="wiki_link" href="/redundancy">redundancy</a>, that of octave equivalence, and thus require special attention.</body></html></pre></div> | Other EDONOI contain no approximation of an octave or a compound octave (at least, not for a while), and continue generating new tones as they continue upward or downward. Such scales lack a very familiar compositional <a class="wiki_link" href="/redundancy">redundancy</a>, that of octave equivalence, and thus require special attention.</body></html></pre></div> |
Revision as of 18:05, 24 December 2009
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author Andrew_Heathwaite and made on 2009-12-24 18:05:24 UTC.
- The original revision id was 111024331.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
EDONOI is short for "equal divisions of a non-octave interval". Examples include the equal-tempered [[BP|Bohlen-Pierce scale]] (a.k.a. the 13th root of 3), [[Carlos Alpha]], [[Carlos Beta]], [[Carlos Gamma]], the [[19ED3|19th root of 3]], the [[6edf|6th root of 3:2]] , [[88cET]] and the [[square root of 13 over 10|square root of 13:10]] . Some EDONOI contain an interval close to a 2:1 that might function like a stretched or squashed octave. They can thus be considered variations on [[edo]]s. Other EDONOI contain no approximation of an octave or a compound octave (at least, not for a while), and continue generating new tones as they continue upward or downward. Such scales lack a very familiar compositional [[redundancy]], that of octave equivalence, and thus require special attention.
Original HTML content:
<html><head><title>macrotonal edonois</title></head><body>EDONOI is short for "equal divisions of a non-octave interval".<br /> <br /> Examples include the equal-tempered <a class="wiki_link" href="/BP">Bohlen-Pierce scale</a> (a.k.a. the 13th root of 3), <a class="wiki_link" href="/Carlos%20Alpha">Carlos Alpha</a>, <a class="wiki_link" href="/Carlos%20Beta">Carlos Beta</a>, <a class="wiki_link" href="/Carlos%20Gamma">Carlos Gamma</a>, the <a class="wiki_link" href="/19ED3">19th root of 3</a>, the <a class="wiki_link" href="/6edf">6th root of 3:2</a> , <a class="wiki_link" href="/88cET">88cET</a> and the <a class="wiki_link" href="/square%20root%20of%2013%20over%2010">square root of 13:10</a> .<br /> <br /> Some EDONOI contain an interval close to a 2:1 that might function like a stretched or squashed octave. They can thus be considered variations on <a class="wiki_link" href="/edo">edo</a>s.<br /> <br /> Other EDONOI contain no approximation of an octave or a compound octave (at least, not for a while), and continue generating new tones as they continue upward or downward. Such scales lack a very familiar compositional <a class="wiki_link" href="/redundancy">redundancy</a>, that of octave equivalence, and thus require special attention.</body></html>