Vulture family: Difference between revisions
m →Buzzard: for some reason 111edo wasnt linked |
Note another important continuum vulture is in. Misc. cleanup |
||
Line 5: | Line 5: | ||
| ja = | | ja = | ||
}} | }} | ||
The '''vulture family''' of [[temperament]]s [[tempering out|tempers out]] the [[vulture comma]] ({{monzo|legend=1| 24 -21 4 }}, [[ratio]]: | The '''vulture family''' of [[temperament]]s [[tempering out|tempers out]] the [[vulture comma]] ({{monzo|legend=1| 24 -21 4 }}, [[ratio]]: 10 485 760 000 / 10 460 353 203), a small [[5-limit]] comma of 4.2 [[cent]]s. | ||
Temperaments discussed elsewhere include [[Landscape microtemperaments #Terture|terture]]. Considered below are septimal vulture, buzzard, condor, eagle, and turkey. | Temperaments discussed elsewhere include [[Landscape microtemperaments #Terture|terture]]. Considered below are septimal vulture, buzzard, condor, eagle, and turkey. | ||
== Vulture == | == Vulture == | ||
The generator of the vulture temperament is a grave fourth of [[320/243]], that is, a [[4/3|perfect fourth]] minus a [[81/80|syntonic comma]]. Four of these make a [[3/1|perfect twelfth]]. Its [[ploidacot]] is alpha-tetracot. It is in the [[schismic–Mercator equivalence continuum]] with ''n'' = 4, so unless [[53edo]] is used as a tuning, the [[schisma]] is always observed. | The generator of the vulture temperament is a grave fourth of [[320/243]], that is, a [[4/3|perfect fourth]] minus a [[81/80|syntonic comma]]. Four of these make a [[3/1|perfect twelfth]]. Its [[ploidacot]] is alpha-tetracot. It is a member of the [[syntonic–diatonic equivalence continuum]] with {{nowrap|''n'' {{=}} 4}}, so it equates a [[256/243|Pythagorean limma]] with a stack of four syntonic commas. It is also in the [[schismic–Mercator equivalence continuum]] with {{nowrap|''n'' {{=}} 4}}, so unless [[53edo]] is used as a tuning, the [[schisma]] is always observed. | ||
[[Subgroup]]: 2.3.5 | [[Subgroup]]: 2.3.5 | ||
Line 33: | Line 33: | ||
== Septimal vulture == | == Septimal vulture == | ||
Septimal vulture can be described as the {{nowrap| 53 & 270 }} microtemperament, tempering out the [[ragisma]], 4375/4374 and the [[garischisma]], 33554432/33480783 ({{monzo| 25 -14 0 -1 }}) aside from the vulture comma. [[270edo]] is a good tuning for this temperament, with generator 107\270. The harmonic 7 is found at -14 fifths or {{nowrap| (-14) × 4 {{=}} -56 }} generator steps, so that the smallest mos scale that includes it is the 58-note one, though for larger scope of harmony, you could try the 111- or 164-note one. For a much simpler mapping of 7 at the cost of higher error, you could try [[#Buzzard|buzzard]]. | Septimal vulture can be described as the {{nowrap| 53 & 270 }} microtemperament, tempering out the [[ragisma]], 4375/4374 and the [[garischisma]], 33554432/33480783 ({{monzo| 25 -14 0 -1 }}) aside from the vulture comma. [[270edo]] is a good tuning for this temperament, with generator 107\270. The harmonic 7 is found at -14 fifths or {{nowrap| (-14) × 4 {{=}} -56 }} generator steps, so that the smallest [[mos scale]] that includes it is the 58-note one, though for larger scope of harmony, you could try the 111- or 164-note one. For a much simpler mapping of 7 at the cost of higher error, you could try [[#Buzzard|buzzard]]. | ||
It can be extended to the 11-limit by identifying a stack of four [[5/4]]'s as [[11/9]], tempering out [[5632/5625]], and to the 13-limit by identifying the hemitwelfth as [[26/15]], tempering out [[676/675]]. Furthermore, the generator of vulture is very close to [[25/19]]; a stack of three generator steps octave-reduced thus represents its fifth complement, [[57/50]]. This corresponds to tempering out [[1216/1215]] with the effect of equating the schisma with [[513/512]] and [[361/360]] in addition to many 11- and 13-limit commas. 270edo remains an excellent tuning in all cases. | It can be extended to the 11-limit by identifying a stack of four [[5/4]]'s as [[11/9]], tempering out [[5632/5625]], and to the 13-limit by identifying the hemitwelfth as [[26/15]], tempering out [[676/675]]. Furthermore, the generator of vulture is very close to [[25/19]]; a stack of three generator steps octave-reduced thus represents its fifth complement, [[57/50]]. This corresponds to tempering out [[1216/1215]] with the effect of equating the schisma with [[513/512]] and [[361/360]] in addition to many 11- and 13-limit commas. 270edo remains an excellent tuning in all cases. |