33edo: Difference between revisions
m chromatic pairs link |
|||
Line 2: | Line 2: | ||
{{EDO intro|33}} | {{EDO intro|33}} | ||
== Theory == | == Theory == | ||
33edo is not especially good at representing all rational intervals in the [[7-limit]], but it does very well on the 7-limit [[k*N_subgroups|3*33 subgroup]] 2.27.15.21.11.13. On this subgroup it tunes things to the same tuning as [[99edo]], and as a subgroup patent val it tempers out the same commas. The 99 equal temperaments hemififths, amity, parakleismic, hemiwuerschmidt, ennealimmal and hendecatonic can be reduced to this subgroup and give various possibilities for MOS scales, etc. In particular, the [[ | 33edo is not especially good at representing all rational intervals in the [[7-limit]], but it does very well on the 7-limit [[k*N_subgroups|3*33 subgroup]] 2.27.15.21.11.13. On this subgroup it tunes things to the same tuning as [[99edo]], and as a subgroup patent val it tempers out the same commas. The 99 equal temperaments hemififths, amity, parakleismic, hemiwuerschmidt, ennealimmal and hendecatonic can be reduced to this subgroup and give various possibilities for MOS scales, etc. In particular, the [[Subgroup temperaments#Terrain|terrain]] 2.7/5.9/5 subgroup temperament can be tuned via the 5\33 generator. The full system of harmony provides the optimal patent val for [[Mint_temperaments#Slurpee|slurpee temperament]] in the 5, 7, 11 and 13 limits. | ||
While relatively uncommon, 33edo is actually quite an interesting system. As a multiple of [[11edo]], it approximates the 7th and 11th harmonics via [[orgone]] temperament (see [[26edo]]). 33edo also tunes the 13th harmonic slightly flat, allowing it to approximate the 21st and 17th harmonics as well, having a [[3L 7s|3L 7s]] with {{nowrap|L {{=}} 4|s {{=}} 3}}. The 33c mapping (which has val {{val| 33 52 76 }}) tempers out [[81/80]] and can be used to represent [[1/2-comma meantone]], a [[Meantone family#Flattertone|"flattertone"]] tuning where the whole tone is 10/9 in size. Indeed, the perfect fifth is tuned about 11 cents flat, and two stacked fifths fall only 0.6 cents flat of 10/9. Leaving the scale be would result in the standard diatonic scale ([[5L 2s]]) having minor seconds of four steps and whole tones of five steps. This also results in common practice minor and major chords becoming more supraminor and submajor in character, making everything sound almost neutral in quality. | While relatively uncommon, 33edo is actually quite an interesting system. As a multiple of [[11edo]], it approximates the 7th and 11th harmonics via [[orgone]] temperament (see [[26edo]]). 33edo also tunes the 13th harmonic slightly flat, allowing it to approximate the 21st and 17th harmonics as well, having a [[3L 7s|3L 7s]] with {{nowrap|L {{=}} 4|s {{=}} 3}}. The 33c mapping (which has val {{val| 33 52 76 }}) tempers out [[81/80]] and can be used to represent [[1/2-comma meantone]], a [[Meantone family#Flattertone|"flattertone"]] tuning where the whole tone is 10/9 in size. Indeed, the perfect fifth is tuned about 11 cents flat, and two stacked fifths fall only 0.6 cents flat of 10/9. Leaving the scale be would result in the standard diatonic scale ([[5L 2s]]) having minor seconds of four steps and whole tones of five steps. This also results in common practice minor and major chords becoming more supraminor and submajor in character, making everything sound almost neutral in quality. |