User:BudjarnLambeth/Sandbox: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
BudjarnLambeth (talk | contribs)
mNo edit summary
BudjarnLambeth (talk | contribs)
mNo edit summary
Line 1: Line 1:
'''This is a working out sandbox page, not a content page.'''
'''This is a working out sandbox page, not a content page.'''


{{Harmonics in cet| 1.99316 |intervals=prime|columns=11}}
{{Harmonics in cet| 148 |intervals=prime|columns=11}}


{{Harmonics in equal|602|2|1|intervals=prime|columns=11}}
{{Harmonics in cet| 149 |intervals=prime|columns=11}}


<pre>
{{Harmonics in equal|8|2|1|intervals=prime|columns=11}}
28.701432
57.402864
86.104296
114.805728
143.507160
172.208592
200.910024
229.611456
258.312888
287.014320
315.715752
344.417184
373.118616
401.820048
430.521480
459.222912
487.924344
516.625776
545.327208
574.028640
602.730072
631.431504
660.132936
688.834368
717.535800
746.237232
774.938664
803.640096
832.341528
861.042960
889.744392
918.445824
947.147256
975.848688
1004.550120
1033.251552
1061.952984
1090.654416
1119.355848
1148.057280
1176.758712
1205.460144


APS720jot Eugene[9]
{{Harmonics in cet| 151 |intervals=prime|columns=11}}
86.104296
315.715752
401.820048
487.924344
717.535800
803.640096
889.744392
1119.355848
1205.460144


.
{{Harmonics in cet| 152 |intervals=prime|columns=11}}
 
pentatonic subsets
86.104296
487.924344
717.535800
803.640096
1205.460144
 
86.104296
487.924344
717.535800
889.744392
1205.460144
 
86.104296
487.924344
717.535800
1119.355848
1205.460144
 
315.715752
487.924344
717.535800
803.640096
1205.460144
 
315.715752
487.924344
717.535800
889.744392
1205.460144
 
315.715752
487.924344
717.535800
1119.355848
1205.460144
 
401.820048
487.924344
717.535800
803.640096
1205.460144
 
401.820048
487.924344
717.535800
889.744392
1205.460144
 
401.820048
487.924344
717.535800
1119.355848
1205.460144
</pre>

Revision as of 07:50, 14 December 2024

This is a working out sandbox page, not a content page.


Approximation of prime harmonics in 1ed148c
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) -16.0 +22.0 +25.7 +35.2 -7.3 -0.5 -21.0 -65.5 +47.7 -57.6 -25.0
Relative (%) -10.8 +14.9 +17.4 +23.8 -4.9 -0.4 -14.2 -44.3 +32.2 -38.9 -16.9
Step 8 13 19 23 28 30 33 34 37 39 40


Approximation of prime harmonics in 1ed149c
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) -8.0 +35.0 +44.7 +58.2 +20.7 +29.5 +12.0 -31.5 -64.3 -18.6 +15.0
Relative (%) -5.4 +23.5 +30.0 +39.0 +13.9 +19.8 +8.1 -21.1 -43.1 -12.5 +10.0
Step 8 13 19 23 28 30 33 34 36 39 40


Approximation of prime harmonics in 8edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.0 +48.0 +63.7 -68.8 +48.7 +59.5 +45.0 +2.5 -28.3 +20.4 +55.0
Relative (%) +0.0 +32.0 +42.5 -45.9 +32.5 +39.6 +30.0 +1.7 -18.8 +13.6 +36.6
Steps
(reduced)
8
(0)
13
(5)
19
(3)
22
(6)
28
(4)
30
(6)
33
(1)
34
(2)
36
(4)
39
(7)
40
(0)


Approximation of prime harmonics in 1ed151c
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +8.0 +61.0 -68.3 -46.8 -74.3 -61.5 -73.0 +36.5 +7.7 +59.4 -56.0
Relative (%) +5.3 +40.4 -45.2 -31.0 -49.2 -40.7 -48.3 +24.2 +5.1 +39.4 -37.1
Step 8 13 18 22 27 29 32 34 36 39 39


Approximation of prime harmonics in 1ed152c
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +16.0 +74.0 -50.3 -24.8 -47.3 -32.5 -41.0 +70.5 +43.7 -53.6 -17.0
Relative (%) +10.5 +48.7 -33.1 -16.3 -31.1 -21.4 -26.9 +46.4 +28.8 -35.2 -11.2
Step 8 13 18 22 27 29 32 34 36 38 39