Graham complexity: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>genewardsmith
**Imported revision 242020965 - Original comment: **
Wikispaces>genewardsmith
**Imported revision 295024044 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-07-19 19:55:31 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2012-01-24 18:49:46 UTC</tt>.<br>
: The original revision id was <tt>242020965</tt>.<br>
: The original revision id was <tt>295024044</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 8: Line 8:
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">The //Graham complexity// of a set of pitch classes in a rank two temperament is the number of periods per octave times the difference between the maximum and minimum number of generators required to reach each pitch class. For example, consider a major triad in diaschismic temperament, with mapping [&lt;2 0 11|, &lt;0 1 -2|] corresponding to a generator of a '3'. That makes a 5/4 represented by [7 -2] and 3/2 by [-2 1], and 1 of course by [0 0]; so that the difference between the maximum and minimum number of generators is 1 - (-2) = 3, and so the Graham complexity of a major triad is 2*3 = 6.
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">The //Graham complexity// of a set of pitch classes in a rank two temperament is the number of periods per octave times the difference between the maximum and minimum number of generators required to reach each pitch class. For example, consider a major triad in diaschismic temperament, with mapping [&lt;2 0 11|, &lt;0 1 -2|] corresponding to a generator of a '3'. That makes a 5/4 represented by [7 -2] and 3/2 by [-2 1], and 1 of course by [0 0]; so that the difference between the maximum and minimum number of generators is 1 - (-2) = 3, and so the Graham complexity of a major triad is 2*3 = 6.


Given a MOS (or any generated scale) with N notes in a temperament where a given chord has a Graham complexity of C results in N-C chords in the MOS. For instance, the Graham complexity for both a major or a minor triad in meantone is 4, and hence there are 7-4 = 3 major triads in the diatonic scale, which is Meantone[7], and 3 minor triads. </pre></div>
Given a MOS (or any generated scale) with N notes in a temperament where a given chord has a Graham complexity of C results in N-C chords in the MOS. For instance, the Graham complexity for both a major or a minor triad in meantone is 4, and hence there are 7-4 = 3 major triads in the diatonic scale, which is Meantone[7], and 3 minor triads.
 
The Graham complexity of the q-limit [[chord of nature]] is a complexity measure of the temperament itself, which is also sometimes called the Graham complexity.</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Graham complexity&lt;/title&gt;&lt;/head&gt;&lt;body&gt;The &lt;em&gt;Graham complexity&lt;/em&gt; of a set of pitch classes in a rank two temperament is the number of periods per octave times the difference between the maximum and minimum number of generators required to reach each pitch class. For example, consider a major triad in diaschismic temperament, with mapping [&amp;lt;2 0 11|, &amp;lt;0 1 -2|] corresponding to a generator of a '3'. That makes a 5/4 represented by [7 -2] and 3/2 by [-2 1], and 1 of course by [0 0]; so that the difference between the maximum and minimum number of generators is 1 - (-2) = 3, and so the Graham complexity of a major triad is 2*3 = 6.&lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Graham complexity&lt;/title&gt;&lt;/head&gt;&lt;body&gt;The &lt;em&gt;Graham complexity&lt;/em&gt; of a set of pitch classes in a rank two temperament is the number of periods per octave times the difference between the maximum and minimum number of generators required to reach each pitch class. For example, consider a major triad in diaschismic temperament, with mapping [&amp;lt;2 0 11|, &amp;lt;0 1 -2|] corresponding to a generator of a '3'. That makes a 5/4 represented by [7 -2] and 3/2 by [-2 1], and 1 of course by [0 0]; so that the difference between the maximum and minimum number of generators is 1 - (-2) = 3, and so the Graham complexity of a major triad is 2*3 = 6.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Given a MOS (or any generated scale) with N notes in a temperament where a given chord has a Graham complexity of C results in N-C chords in the MOS. For instance, the Graham complexity for both a major or a minor triad in meantone is 4, and hence there are 7-4 = 3 major triads in the diatonic scale, which is Meantone[7], and 3 minor triads.&lt;/body&gt;&lt;/html&gt;</pre></div>
Given a MOS (or any generated scale) with N notes in a temperament where a given chord has a Graham complexity of C results in N-C chords in the MOS. For instance, the Graham complexity for both a major or a minor triad in meantone is 4, and hence there are 7-4 = 3 major triads in the diatonic scale, which is Meantone[7], and 3 minor triads. &lt;br /&gt;
&lt;br /&gt;
The Graham complexity of the q-limit &lt;a class="wiki_link" href="/chord%20of%20nature"&gt;chord of nature&lt;/a&gt; is a complexity measure of the temperament itself, which is also sometimes called the Graham complexity.&lt;/body&gt;&lt;/html&gt;</pre></div>

Revision as of 18:49, 24 January 2012

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author genewardsmith and made on 2012-01-24 18:49:46 UTC.
The original revision id was 295024044.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

The //Graham complexity// of a set of pitch classes in a rank two temperament is the number of periods per octave times the difference between the maximum and minimum number of generators required to reach each pitch class. For example, consider a major triad in diaschismic temperament, with mapping [<2 0 11|, <0 1 -2|] corresponding to a generator of a '3'. That makes a 5/4 represented by [7 -2] and 3/2 by [-2 1], and 1 of course by [0 0]; so that the difference between the maximum and minimum number of generators is 1 - (-2) = 3, and so the Graham complexity of a major triad is 2*3 = 6.

Given a MOS (or any generated scale) with N notes in a temperament where a given chord has a Graham complexity of C results in N-C chords in the MOS. For instance, the Graham complexity for both a major or a minor triad in meantone is 4, and hence there are 7-4 = 3 major triads in the diatonic scale, which is Meantone[7], and 3 minor triads. 

The Graham complexity of the q-limit [[chord of nature]] is a complexity measure of the temperament itself, which is also sometimes called the Graham complexity.

Original HTML content:

<html><head><title>Graham complexity</title></head><body>The <em>Graham complexity</em> of a set of pitch classes in a rank two temperament is the number of periods per octave times the difference between the maximum and minimum number of generators required to reach each pitch class. For example, consider a major triad in diaschismic temperament, with mapping [&lt;2 0 11|, &lt;0 1 -2|] corresponding to a generator of a '3'. That makes a 5/4 represented by [7 -2] and 3/2 by [-2 1], and 1 of course by [0 0]; so that the difference between the maximum and minimum number of generators is 1 - (-2) = 3, and so the Graham complexity of a major triad is 2*3 = 6.<br />
<br />
Given a MOS (or any generated scale) with N notes in a temperament where a given chord has a Graham complexity of C results in N-C chords in the MOS. For instance, the Graham complexity for both a major or a minor triad in meantone is 4, and hence there are 7-4 = 3 major triads in the diatonic scale, which is Meantone[7], and 3 minor triads. <br />
<br />
The Graham complexity of the q-limit <a class="wiki_link" href="/chord%20of%20nature">chord of nature</a> is a complexity measure of the temperament itself, which is also sometimes called the Graham complexity.</body></html>