Golden meantone: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>xenwolf
**Imported revision 468693454 - Original comment: **
 
Wikispaces>genewardsmith
**Imported revision 468774218 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:xenwolf|xenwolf]] and made on <tt>2013-11-13 10:11:14 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2013-11-13 13:39:11 UTC</tt>.<br>
: The original revision id was <tt>468693454</tt>.<br>
: The original revision id was <tt>468774218</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">**Golden Meantone** is based on the paradigm that the relation between whole and half tone intervals should be the [[http://en.wikipedia.org/wiki/Golden_ratio|Golden Ratio]]
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">**Golden Meantone** is based on making the relation between whole tone and diatonic semitone intervals be the [[http://en.wikipedia.org/wiki/Golden_ratio|Golden Ratio]]


[[math]]
[[math]]
Line 12: Line 12:
[[math]]
[[math]]


Thus some edo systems - the 12-step too - could be considered as approximations to this ideal.
This makes the Golden fifth exactly
 
[[math]]
(8 - \varphi) / 11
[[math]]
 
octave, or
 
[[math]]
(9600 - 1200 \varphi) / 11
[[math]]
 
cents.
 
Edo systems in a Fibonacci style recurrence beginning with 7 and 12 are successively better approximations to this ideal.


== Construction ==
== Construction ==
Line 32: Line 46:
[[http://www.io.com/~hmiller/midi/canon-golden.mid|An acoustic experience]] - Kornerup himself had no chance to have it - is contained in the [[Warped canon]] collection.</pre></div>
[[http://www.io.com/~hmiller/midi/canon-golden.mid|An acoustic experience]] - Kornerup himself had no chance to have it - is contained in the [[Warped canon]] collection.</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Golden Meantone&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;strong&gt;Golden Meantone&lt;/strong&gt; is based on the paradigm that the relation between whole and half tone intervals should be the &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Golden_ratio" rel="nofollow"&gt;Golden Ratio&lt;/a&gt;&lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Golden Meantone&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;strong&gt;Golden Meantone&lt;/strong&gt; is based on making the relation between whole tone and diatonic semitone intervals be the &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Golden_ratio" rel="nofollow"&gt;Golden Ratio&lt;/a&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextMathRule:0:
&lt;!-- ws:start:WikiTextMathRule:0:
Line 39: Line 53:
  --&gt;&lt;script type="math/tex"&gt;\varphi = \frac 1 2 (\sqrt{5}+1) \approx 1.61803\,39887\ldots\,&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:0 --&gt;&lt;br /&gt;
  --&gt;&lt;script type="math/tex"&gt;\varphi = \frac 1 2 (\sqrt{5}+1) \approx 1.61803\,39887\ldots\,&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:0 --&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Thus some edo systems - the 12-step too - could be considered as approximations to this ideal.&lt;br /&gt;
This makes the Golden fifth exactly&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextMathRule:1:
[[math]]&amp;lt;br/&amp;gt;
(8 - \varphi) / 11&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;(8 - \varphi) / 11&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:1 --&gt;&lt;br /&gt;
&lt;br /&gt;
octave, or&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextMathRule:2:
[[math]]&amp;lt;br/&amp;gt;
(9600 - 1200 \varphi) / 11&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;(9600 - 1200 \varphi) / 11&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:2 --&gt;&lt;br /&gt;
&lt;br /&gt;
cents.&lt;br /&gt;
&lt;br /&gt;
Edo systems in a Fibonacci style recurrence beginning with 7 and 12 are successively better approximations to this ideal.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:1:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc0"&gt;&lt;a name="x-Construction"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:1 --&gt; Construction &lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:3:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc0"&gt;&lt;a name="x-Construction"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:3 --&gt; Construction &lt;/h2&gt;
If you use two neighboring numbers from Fibonacci Series 1 1 2 3 5 8 13 21... you get the following approximations:&lt;br /&gt;
If you use two neighboring numbers from Fibonacci Series 1 1 2 3 5 8 13 21... you get the following approximations:&lt;br /&gt;
  1, 1 -&amp;gt; &lt;a class="wiki_link" href="/7edo"&gt;7edo&lt;/a&gt;&lt;br /&gt;
  1, 1 -&amp;gt; &lt;a class="wiki_link" href="/7edo"&gt;7edo&lt;/a&gt;&lt;br /&gt;
Line 51: Line 81:
13, 21 -&amp;gt; &lt;a class="wiki_link" href="/131edo"&gt;131edo&lt;/a&gt;&lt;br /&gt;
13, 21 -&amp;gt; &lt;a class="wiki_link" href="/131edo"&gt;131edo&lt;/a&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:3:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc1"&gt;&lt;a name="x-Evaluation"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:3 --&gt; Evaluation &lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:5:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc1"&gt;&lt;a name="x-Evaluation"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:5 --&gt; Evaluation &lt;/h2&gt;
&lt;br /&gt;
&lt;br /&gt;
Graham Breed &lt;a class="wiki_link_ext" href="http://x31eq.com/meantone.htm" rel="nofollow"&gt;writes&lt;/a&gt;: &lt;em&gt;I think of this as the standard melodic meantone because the all these ratios are the same. It has the mellow sound of 1/4 comma, but does still have a character of its own. Some algorithms make this almost exactly the optimum 5-limit tuning. It's fairly good as a 7-limit tuning as well. Almost the optimum (according to me) for diminished sevenths. I toyed with this as a guitar tuning, but rejected it because 4:6:9 chords aren't quite good enough. That is, the poor fifth leads to a sludgy major ninth.&lt;/em&gt;&lt;br /&gt;
Graham Breed &lt;a class="wiki_link_ext" href="http://x31eq.com/meantone.htm" rel="nofollow"&gt;writes&lt;/a&gt;: &lt;em&gt;I think of this as the standard melodic meantone because the all these ratios are the same. It has the mellow sound of 1/4 comma, but does still have a character of its own. Some algorithms make this almost exactly the optimum 5-limit tuning. It's fairly good as a 7-limit tuning as well. Almost the optimum (according to me) for diminished sevenths. I toyed with this as a guitar tuning, but rejected it because 4:6:9 chords aren't quite good enough. That is, the poor fifth leads to a sludgy major ninth.&lt;/em&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:5:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc2"&gt;&lt;a name="x-Listening"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:5 --&gt; Listening &lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:7:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc2"&gt;&lt;a name="x-Listening"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:7 --&gt; Listening &lt;/h2&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://www.io.com/~hmiller/midi/canon-golden.mid" rel="nofollow"&gt;An acoustic experience&lt;/a&gt; - Kornerup himself had no chance to have it - is contained in the &lt;a class="wiki_link" href="/Warped%20canon"&gt;Warped canon&lt;/a&gt; collection.&lt;/body&gt;&lt;/html&gt;</pre></div>
&lt;a class="wiki_link_ext" href="http://www.io.com/~hmiller/midi/canon-golden.mid" rel="nofollow"&gt;An acoustic experience&lt;/a&gt; - Kornerup himself had no chance to have it - is contained in the &lt;a class="wiki_link" href="/Warped%20canon"&gt;Warped canon&lt;/a&gt; collection.&lt;/body&gt;&lt;/html&gt;</pre></div>

Revision as of 13:39, 13 November 2013

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author genewardsmith and made on 2013-11-13 13:39:11 UTC.
The original revision id was 468774218.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

**Golden Meantone** is based on making the relation between whole tone and diatonic semitone intervals be the [[http://en.wikipedia.org/wiki/Golden_ratio|Golden Ratio]]

[[math]]
\varphi = \frac 1 2 (\sqrt{5}+1) \approx 1.61803\,39887\ldots\,
[[math]]

This makes the Golden fifth exactly

[[math]]
(8 - \varphi) / 11
[[math]]

octave, or

[[math]]
(9600 - 1200 \varphi) / 11
[[math]]

cents.

Edo systems in a Fibonacci style recurrence beginning with 7 and 12 are successively better approximations to this ideal.

== Construction ==
If you use two neighboring numbers from Fibonacci Series 1 1 2 3 5 8 13 21... you get the following approximations:
 1, 1 -> [[7edo]]
 1, 2 -> [[12edo]]
 2, 3 -> [[19edo]]
 3, 5 -> [[31edo]]
 5, 8 -> [[50edo]]
 8, 13 -> [[81edo]]
13, 21 -> [[131edo]]

== Evaluation ==

Graham Breed [[http://x31eq.com/meantone.htm|writes]]: //I think of this as the standard melodic meantone because the all these ratios are the same. It has the mellow sound of 1/4 comma, but does still have a character of its own. Some algorithms make this almost exactly the optimum 5-limit tuning. It's fairly good as a 7-limit tuning as well. Almost the optimum (according to me) for diminished sevenths. I toyed with this as a guitar tuning, but rejected it because 4:6:9 chords aren't quite good enough. That is, the poor fifth leads to a sludgy major ninth.//

== Listening ==

[[http://www.io.com/~hmiller/midi/canon-golden.mid|An acoustic experience]] - Kornerup himself had no chance to have it - is contained in the [[Warped canon]] collection.

Original HTML content:

<html><head><title>Golden Meantone</title></head><body><strong>Golden Meantone</strong> is based on making the relation between whole tone and diatonic semitone intervals be the <a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Golden_ratio" rel="nofollow">Golden Ratio</a><br />
<br />
<!-- ws:start:WikiTextMathRule:0:
[[math]]&lt;br/&gt;
\varphi = \frac 1 2 (\sqrt{5}+1) \approx 1.61803\,39887\ldots\,&lt;br/&gt;[[math]]
 --><script type="math/tex">\varphi = \frac 1 2 (\sqrt{5}+1) \approx 1.61803\,39887\ldots\,</script><!-- ws:end:WikiTextMathRule:0 --><br />
<br />
This makes the Golden fifth exactly<br />
<br />
<!-- ws:start:WikiTextMathRule:1:
[[math]]&lt;br/&gt;
(8 - \varphi) / 11&lt;br/&gt;[[math]]
 --><script type="math/tex">(8 - \varphi) / 11</script><!-- ws:end:WikiTextMathRule:1 --><br />
<br />
octave, or<br />
<br />
<!-- ws:start:WikiTextMathRule:2:
[[math]]&lt;br/&gt;
(9600 - 1200 \varphi) / 11&lt;br/&gt;[[math]]
 --><script type="math/tex">(9600 - 1200 \varphi) / 11</script><!-- ws:end:WikiTextMathRule:2 --><br />
<br />
cents.<br />
<br />
Edo systems in a Fibonacci style recurrence beginning with 7 and 12 are successively better approximations to this ideal.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:3:&lt;h2&gt; --><h2 id="toc0"><a name="x-Construction"></a><!-- ws:end:WikiTextHeadingRule:3 --> Construction </h2>
If you use two neighboring numbers from Fibonacci Series 1 1 2 3 5 8 13 21... you get the following approximations:<br />
 1, 1 -&gt; <a class="wiki_link" href="/7edo">7edo</a><br />
 1, 2 -&gt; <a class="wiki_link" href="/12edo">12edo</a><br />
 2, 3 -&gt; <a class="wiki_link" href="/19edo">19edo</a><br />
 3, 5 -&gt; <a class="wiki_link" href="/31edo">31edo</a><br />
 5, 8 -&gt; <a class="wiki_link" href="/50edo">50edo</a><br />
 8, 13 -&gt; <a class="wiki_link" href="/81edo">81edo</a><br />
13, 21 -&gt; <a class="wiki_link" href="/131edo">131edo</a><br />
<br />
<!-- ws:start:WikiTextHeadingRule:5:&lt;h2&gt; --><h2 id="toc1"><a name="x-Evaluation"></a><!-- ws:end:WikiTextHeadingRule:5 --> Evaluation </h2>
<br />
Graham Breed <a class="wiki_link_ext" href="http://x31eq.com/meantone.htm" rel="nofollow">writes</a>: <em>I think of this as the standard melodic meantone because the all these ratios are the same. It has the mellow sound of 1/4 comma, but does still have a character of its own. Some algorithms make this almost exactly the optimum 5-limit tuning. It's fairly good as a 7-limit tuning as well. Almost the optimum (according to me) for diminished sevenths. I toyed with this as a guitar tuning, but rejected it because 4:6:9 chords aren't quite good enough. That is, the poor fifth leads to a sludgy major ninth.</em><br />
<br />
<!-- ws:start:WikiTextHeadingRule:7:&lt;h2&gt; --><h2 id="toc2"><a name="x-Listening"></a><!-- ws:end:WikiTextHeadingRule:7 --> Listening </h2>
<br />
<a class="wiki_link_ext" href="http://www.io.com/~hmiller/midi/canon-golden.mid" rel="nofollow">An acoustic experience</a> - Kornerup himself had no chance to have it - is contained in the <a class="wiki_link" href="/Warped%20canon">Warped canon</a> collection.</body></html>