125edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
ArrowHead294 (talk | contribs)
mNo edit summary
ArrowHead294 (talk | contribs)
m Partial undo
Line 12: Line 12:


== Regular temperament properties ==
== Regular temperament properties ==
{{comma basis begin}}
{| class="wikitable center-4 center-5 center-6"
|-
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br />8ve stretch (¢)
! colspan="2" | Tuning error
|-
! [[TE error|Absolute]] (¢)
! [[TE simple badness|Relative]] (%)
|-
|-
| 2.3
| 2.3
Line 48: Line 57:
| 0.622
| 0.622
| 6.47
| 6.47
{{comma basis end}}
|}


=== Rank-2 temperaments ===
=== Rank-2 temperaments ===
{{rank-2 begin}}
{| class="wikitable center-all left-5"
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator
|-
! Periods<br />per 8ve
! Generator*
! Cents*
! Associated<br />ratio*
! Temperaments
|-
|-
| 1
| 1
Line 106: Line 122:
| 4/3<br>(81/80)
| 4/3<br>(81/80)
| [[Pental (temperament)|Pental]]
| [[Pental (temperament)|Pental]]
{{rank-2 end}}
|}
{{orf}}
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if it is distinct


[[Category:Catakleismic]]
[[Category:Catakleismic]]

Revision as of 12:53, 16 November 2024

← 124edo 125edo 126edo →
Prime factorization 53
Step size 9.6 ¢ 
Fifth 73\125 (700.8 ¢)
Semitones (A1:m2) 11:10 (105.6 ¢ : 96 ¢)
Consistency limit 9
Distinct consistency limit 9

Template:EDO intro

Theory

The equal temperament tempers out 15625/15552 in the 5-limit; 225/224 and 4375/4374 in the 7-limit; 385/384 and 540/539 in the 11-limit. It defines the optimal patent val for 7- and 11-limit slender temperament. In the 13-limit the 125f val 125 198 290 351 432 462] does a better job, where it tempers out 169/168, 325/324, 351/350, 625/624 and 676/675, providing a good tuning for catakleismic.

Prime harmonics

Approximation of prime harmonics in 125edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 -1.16 -2.31 +0.77 -4.12 +4.27 +0.64 +0.09 -4.27 -2.38 -2.64
Relative (%) +0.0 -12.0 -24.1 +8.1 -42.9 +44.5 +6.7 +0.9 -44.5 -24.8 -27.5
Steps
(reduced)
125
(0)
198
(73)
290
(40)
351
(101)
432
(57)
463
(88)
511
(11)
531
(31)
565
(65)
607
(107)
619
(119)

Subsets and supersets

Since 125 factors into 53, 125edo contains 5edo and 25edo as its subsets. Being the cube closest to division of the octave by the Germanic long hundred, 125edo has a unit step which is the cubic (fine) relative cent of 1edo.

Regular temperament properties

Subgroup Comma list Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3 [-198 125 [125 198]] +0.364 0.364 3.80
2.3.5 15625/15552, 17433922005/17179869184 [125 198 290]] +0.575 0.421 4.39
2.3.5.7 225/224, 4375/4374, 589824/588245 [125 198 290 351]] +0.362 0.519 5.40
2.3.5.7.11 225/224, 385/384, 1331/1323, 4375/4374 [125 198 290 351 432]] +0.528 0.570 5.94
2.3.5.7.11.13 169/168, 225/224, 325/324, 385/384, 1331/1323 [125 198 290 351 432 462]] (125f) +0.680 0.622 6.47

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
ratio*
Temperaments
1 4\125 38.4 49/48 Slender
1 12\125 115.2 77/72 Semigamera
1 19\125 182.4 10/9 Mitonic
1 24\125 230.4 8/7 Gamera
1 33\125 316.8 6/5 Catakleismic
1 52\125 499.2 4/3 Gracecordial
1 61\125 585.6 7/5 Merman
5 26\125
(1\125)
249.6
(9.6)
81/70
(176/175)
Hemipental
5 52\125
(2\125)
499.2
(19.2)
4/3
(81/80)
Pental

* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct